0000000000275102

AUTHOR

J. Woellenstein

CMOS-compatible nanoscale gas-sensor based on field effect

The integration of a solid state gas sensor of the metal oxide sensor type into CMOS technology still is a challenge because of the high temperatures during metal oxide annealing and sensor operation that do not comply with silicon device stability. In the presence of an external electric field sensor sensitivity can be controlled through a change of the Fermi energy level and consequently it is possible to reduce the operation temperature. Based in this effect, a novel field effect gas sensor was developed resembling a reversed insulated : gate field effect transistor (IGFET) with the thickness of gas sensing layer in the range of the Debye length (L D ). Under these conditions the control…

research product

CMOS-compatible field effect nanoscale gas-sensor: Operation and annealing models

Complete modelling of electrically controlled nanoscale gas sensors with Poisson, Wolkenstein, Fokker-Planck and continuity is presented. Based on a plausible Drift explanation we developed suitable models for sensitivity control and operational modes. An onset for CMOS-complying annealing procedures is given.

research product

B7.3 - Field Effect SnO2 Nano-Thin Film Layer CMOS-Compatible

The integration of metal oxide gas sensing layers into CMOS electronic still a challenge especially due to the high operating temperatures that do not comply with silicon transistor limits , even more critical, and metal oxide annealing temperatures. External electric fields will allow control over the energy levels of the sensing layer and thus over adsorption sensitivity, consequently the interaction between gas and sensitive layer is modulated. As the absorbed gas on the surface produces a band bending, it changes conduction paths allowing gas detection through resistance measurements. With this configuration, field switch offers fast desorption and thus handling of low temperature respo…

research product