0000000000275471

AUTHOR

Yu. B. Gurov

Spin-parity of the 13.35 MeV state and high-lying states around 20 MeV in excitation energy in $^{12}$C nucleus

Study of the $^{11}$B($^{3}$He,d)$^{12}$C reaction at incident $^{3}$He energy E$_{lab}$ = 25 MeV has been performed at the K-130 cyclotron at the University of Jyv\"askyl\"a, Finland. Differential cross sections have been measured for the 13.35 MeV state and for the states with excitation energy around 20 MeV. The data were analyzed with the DWBA method. A tentative assignment, 4$^{-}$, is given for the state at 13.35 MeV. For the state at 20.98 MeV, the spin-parity 3$^{-}$ and the isospin T = 0 are assigned for the first time. Our model description of the broad state at 21.6 MeV is consistent with the previous assignments of isospin T = 0 and spin-parity of 2$^{+}$ and 3$^{-}$. The excite…

research product

The Neutron Structure of the Ground State of 7He

A study of the neutron structure of the ground state of 7He has been performed by means of registration and analysis of the decay channels of the residual nuclei following absorption of stopped pions. In particular, the reactions 9Be(π−, d)X and 11B(π−, dd)X have been investigated where X denotes any system with five neutrons and two protons — the constituencies of a 7He nucleus. The results point out to the existence of a halo-like configuration of the ground state of 7He with all three neutrons outside of the alpha particle core. The structure of this complicated halo-like state is determined by the correlations of neutrons in the p3/2 and p1/2 shells. The result would be in agreement wit…

research product

STATES OF 12N WITH ENHANCED RADII

The differential cross sections of the $^{12}$C($^3$He,t)$^{12}$N reaction leading to formation of the 1$^+$ (ground state), 2$^+$(0.96 MeV), 2$^{-}$(1.19 MeV), and 1$^{-}$(1.80 MeV) states of $^{12}$N are measured at $E$($^3$He)=40 MeV. The analysis of the data is carried out within the modified diffraction model (MDM) and distorted wave Born approximation (DWBA). Enhanced $rms$ radii were obtained for the ground, 2$^{-}$(1.19 MeV), and 1$^{-}$(1.80 MeV) states. We revealed that $^{12}$B, $^{12}$N, and $^{12}$C in the IAS with T=1, and spin-parities 2$^{-}$ and 1$^{-}$ have increased radii and exhibit properties of neutron and proton halo states.

research product

Halo-like structure in 7He nucleus

Abstract A study of the neutron structure of the ground state of 7He has been performed by means of registration and analysis of the decay channels of the residual nuclei following absorption of stopped pions. In particular, the reaction 9Be ( π − , d )X have been investigated where X denotes any system with five neutrons and two protons – the constituencies of a 7He nucleus. It was shown that the structure of 7He is determined by correlations of two neutrons in the states 6He (0+), 6He (2+) and one neutron in the shell p3/2. The 4He+3n structure is not manifested in the ground state of 7He. The obtained results are consistent with the known data on considerable mixture of configurations “6…

research product

Spectroscopy of exotic states of 13C

The differential cross-sections of the elastic and inelastic 13C + α scattering were measured at E (α) = 65 MeV. The radii of the states: 8.86 (1/2¯), 3.09 (1/2+ ) and 9.90 (3/2¯) MeV were determined by the Modified diffraction model (MDM). The radii of the first two levels are enhanced relatively that of the ground state of 13C, confirming the suggestion that the 8.86 MeV state could be an analogue of the Hoyle state in 12C and the 3.09 MeV state has a neutron halo. No enhancement of the radius of the 9.90 MeV state was observed. peerReviewed

research product

States of 13C with abnormal radii

Differential cross-sections of the elastic and inelastic 13C + α scattering were measured at E(α) = 90 MeV. The root mean-square radii () of 13C nucleus in the states: 8.86 (1/2−), 3.09 (1/2+) and 9.90 (3/2−) MeV were determined by the Modified diffraction model (MDM). The radii of the first two levels are enhanced compared to that of the ground state of 13C, confirming the suggestion that the 8.86 MeV state is an analogue of the Hoyle state in 12C and the 3.09 MeV state has a neutron halo. Some indications to the abnormally small size of the 9.90 MeV state were obtained. peerReviewed

research product

Cluster states in 11B

The differential cross-sections of the elastic and inelastic 11B + α scattering was measured at E(α) = 65 MeV. The analysis of the data by Modified diffraction model (MDM) showed that the RMS radii of the 11B state 3/2-, E* = 8.56 MeV is ~ 0.6 fm larger than that of the ground state. The 12.56 MeV state was not observed contrary to the predictions of the α-condensate model. The 13.1 MeV state was excited with the angular momentum transfer L = 4 confirming its belonging to the rotational band with the 8.56 MeV state as a head. peerReviewed

research product

Isospin triplet A=14: search for states with enhanced radii

Abstract This article is devoted to study of isobar-analogue states 1− in triplet A=14: 14C-14N-14O. Previously signs of neutron halo in the 1−, 6.09 MeV state of 14C were obtained by two independent groups. In this article we propose to study neighbouring nuclei 14N and 14O using the Modified diffraction model (MDM) method and the method of Asymptotic normalization coefficients (ANC). Methods were applied to experimental differential cross sections of 14C(α,α)14C scattering and reactions 13C(3He,d)14N and 14N(3He,t)14O. MDM and ANC gave practically similar within errors radii for the studied 1− states: the 6.09 MeV state in 14C – 2.7±0.1 fm, the 8.06 MeV state in 14N – 2.7 ± 0.1 fm, the 5.…

research product