0000000000276358

AUTHOR

Bogdan Govoreanu

showing 2 related works from this author

Distribution and generation of traps in SiO2/Al2O3 gate stacks

2007

In this work we combine charge-pumping measurements with positive constant voltage stress to investigate trap generation in SiO2/ Al2O3 n-MOSFET. Trap density has been scanned either in energy or in position based on charge-pumping (CP) measurements performed under different operating conditions in terms of amplitude and frequency of the gate pulse. Our results have revealed that the traps are meanly localized shallow in energy level, deeper in spatial position and they are mostly generated near the Si/SiO2 interface. (C) 2007 Elsevier Ltd. All rights reserved.

interface trapsWork (thermodynamics)Materials sciencecharge pumping (CP)Settore ING-INF/01 - ElettronicaTrap (computing)Stress (mechanics)Position (vector)Electrical and Electronic EngineeringSafety Risk Reliability and QualityBulk trapsbusiness.industryElectrical engineeringCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPulse (physics)AmplitudeDistribution (mathematics)Control and Systems Engineeringenergy distributionAtomic physicsbusinesshigh-k dielectricsEnergy (signal processing)
researchProduct

Profiling of traps in SiO2/Al2O3 gate stack by the charge pumping technique

2006

In this paper, we present our results on the distribution and generation of traps in a SiO 2 /A1 2 O 3 transistor. The investigation has been carried out by using charge pumping measurements, both variable voltage and frequency techniques, and constant voltage stress. By increasing the amplitude of the gate pulse we observe an increase of the charge recombined per cycle closely related to the contribution of shallow traps near the SiO 2 /Al 2 O 3 interface. By reducing the pulse frequency we measure an increase in the charge pumping current due to traps located deeper in the Al 2 O 3 . By combining charge pumping and constant voltage stress measurements, we found that the traps are mostly g…

Materials sciencePhysics::OpticsSettore ING-INF/01 - Elettronicalaw.inventionStress (mechanics)Condensed Matter::Materials ScienceCharge pumpinglawhigh-k materials; charge pumping; traps distribution; traps generationGeneral Materials ScienceTraps generationElectrical and Electronic Engineeringbusiness.industryMechanical EngineeringTransistorCharge (physics)Traps distributionCondensed Matter PhysicsComputer Science::OtherPulse (physics)Electronic Optical and Magnetic MaterialsCharge pumpingAmplitudeMechanics of MaterialsOptoelectronicsHigh-k materialCurrent (fluid)businessVoltage
researchProduct