6533b7d6fe1ef96bd1265c4d

RESEARCH PRODUCT

Distribution and generation of traps in SiO2/Al2O3 gate stacks

Philippe RousselIsodiana CrupiBogdan GovoreanuDavid P. BruncoJan Van HoudtRobin Degraeve

subject

interface trapsWork (thermodynamics)Materials sciencecharge pumping (CP)Settore ING-INF/01 - ElettronicaTrap (computing)Stress (mechanics)Position (vector)Electrical and Electronic EngineeringSafety Risk Reliability and QualityBulk trapsbusiness.industryElectrical engineeringCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPulse (physics)AmplitudeDistribution (mathematics)Control and Systems Engineeringenergy distributionAtomic physicsbusinesshigh-k dielectricsEnergy (signal processing)

description

In this work we combine charge-pumping measurements with positive constant voltage stress to investigate trap generation in SiO2/ Al2O3 n-MOSFET. Trap density has been scanned either in energy or in position based on charge-pumping (CP) measurements performed under different operating conditions in terms of amplitude and frequency of the gate pulse. Our results have revealed that the traps are meanly localized shallow in energy level, deeper in spatial position and they are mostly generated near the Si/SiO2 interface. (C) 2007 Elsevier Ltd. All rights reserved.

10.1016/j.microrel.2007.01.013http://hdl.handle.net/10447/176716