0000000000276846
AUTHOR
A. V. Krichigin
Stochastic model of memristor based on the length of conductive region
Abstract We propose a stochastic model of a voltage controlled bipolar memristive system, which includes the properties of widely used dynamic SPICE models and takes into account the fluctuations inherent in memristors. The proposed model is described by rather simple equations of Brownian diffusion, does not require significant computational resources for numerical modeling, and allows obtaining the exact analytical solutions in some cases. The noise-induced transient bimodality phenomenon, arising under resistive switching, was revealed and investigated theoretically and experimentally in a memristive system, by finding a quite good qualitatively agreement between theory and experiment. B…
Stochastic resonance in a metal-oxide memristive device
Abstract The stochastic resonance phenomenon has been studied experimentally and theoretically for a state-of-art metal-oxide memristive device based on yttria-stabilized zirconium dioxide and tantalum pentoxide, which exhibits bipolar filamentary resistive switching of anionic type. The effect of white Gaussian noise superimposed on the sub-threshold sinusoidal driving signal is analyzed through the time series statistics of the resistive switching parameters, the spectral response to a periodic perturbation and the signal-to-noise ratio at the output of the nonlinear system. The stabilized resistive switching and the increased memristance response are revealed in the observed regularities…
Nonstationary distributions and relaxation times in a stochastic model of memristor
We propose a stochastic model for a memristive system by generalizing known approaches and experimental results. We validate our theoretical model by experiments carried out on a memristive device based on multilayer structure. In the framework of the proposed model we obtain the exact analytic expressions for stationary and nonstationary solutions. We analyze the equilibrium and non-equilibrium steady-state distributions of the internal state variable of the memristive system and study the influence of fluctuations on the resistive switching, including the relaxation time to the steady-state. The relaxation time shows a nonmonotonic dependence, with a minimum, on the intensity of the fluct…
Stochastic resonance in a trapping overdamped monostable system.
The response of a trapping overdamped monostable system to a harmonic perturbation is analyzed, in the context of stochastic resonance phenomenon. We consider the dynamics of a Brownian particle moving in a piecewise linear potential with a white Gaussian noise source. Based on linear-response theory and Laplace transform technique, analytical expressions of signal-to-noise ratio (SNR) and signal power amplification (SPA) are obtained. We find that the SNR is a nonmonotonic function of the noise intensity, while the SPA is monotonic. Theoretical results are compared with numerical simulations.