0000000000277345

AUTHOR

Arnaud Jacquel

0000-0001-5062-8048

showing 7 related works from this author

A role for caspases in the differentiation of erythroid cells and macrophages

2007

Several cysteine proteases of the caspase family play a central role in many forms of cell death by apoptosis. Other enzymes of the family are involved in cytokine maturation along inflammatory response. In recent years, several caspases involved in cell death were shown to play a role in other cellular processes such as proliferation and differentiation. In the present review, we summarize the current knowledge of the role of caspases in the differentiation of erythroid cells and macrophages. Based on these two examples, we show that the nature of involved enzymes, the pathways leading to their activation in response to specific growth factors, and the specificity of the target proteins th…

Erythroid Precursor CellsProteasesCell typeProgrammed cell deathErythrocytesbiologyMacrophagesmedicine.medical_treatmentIntrinsic apoptosisCell DifferentiationGeneral MedicineBiochemistryMonocytesHematopoiesisCell biologyCytokineApoptosisCaspasesmedicinebiology.proteinAnimalsHumansMacrophageMyeloid Progenitor CellsCaspaseBiochimie
researchProduct

Colony-stimulating factor-1-induced oscillations in phosphatidylinositol-3 kinase/AKT are required for caspase activation in monocytes undergoing dif…

2009

Abstract The differentiation of human peripheral blood monocytes into resident macrophages is driven by colony-stimulating factor-1 (CSF-1), which upon interaction with CSF-1 receptor (CSF-1R) induces within minutes the phosphorylation of its cytoplasmic tyrosine residues and the activation of multiple signaling complexes. Caspase-8 and -3 are activated at day 2 to 3 and contribute to macrophage differentiation, for example, through cleavage of nucleophosmin. Here, we show that the phosphatidylinositol-3 kinase and the downstream serine/threonine kinase AKT connect CSF-1R activation to caspase-8 cleavage. Most importantly, we demonstrate that successive waves of AKT activation with increasi…

Macrophage colony-stimulating factorCellular differentiationImmunologyImmunoblottingApoptosisBiologyBiochemistryMonocytesImmunoenzyme TechniquesPhosphatidylinositol 3-KinasesHumansImmunoprecipitationRNA MessengerPhosphorylationProtein kinase BCells CulturedPhosphoinositide-3 Kinase InhibitorsMitogen-Activated Protein Kinase 1Caspase 8Mitogen-Activated Protein Kinase 3MAP kinase kinase kinaseKinaseAkt/PKB signaling pathwayReverse Transcriptase Polymerase Chain ReactionMacrophage Colony-Stimulating FactorMacrophagesCell DifferentiationCell BiologyHematologyFlow CytometryCell biologyEnzyme ActivationPhosphorylationSignal transductionProto-Oncogene Proteins c-aktSignal TransductionBlood
researchProduct

Crosstalk between leukemia-associated proteins MOZ and MLL regulates HOX gene expression in human cord blood CD34+ cells

2010

MOZ and MLL, encoding a histone acetyltransferase (HAT) and a histone methyltransferase, respectively, are targets for recurrent chromosomal translocations found in acute myeloblastic or lymphoblastic leukemia. In MOZ (MOnocytic leukemia Zinc-finger protein)/CBP- or mixed lineage leukemia (MLL)-rearranged leukemias, abnormal levels of HOX transcription factors have been found to be critical for leukemogenesis. We show that MOZ and MLL cooperate to regulate these key genes in human cord blood CD34+ cells. These chromatin-modifying enzymes interact, colocalize and functionally cooperate, and both are recruited to multiple HOX promoters. We also found that WDR5, an adaptor protein essential fo…

Cancer ResearchAntigens CD34HistonesHistone H3hemic and lymphatic diseasesHistone methylationGeneticsHumansWDR5Tissue DistributionPromoter Regions GeneticHox geneneoplasmsMolecular BiologyCells CulturedHistone AcetyltransferasesHomeodomain ProteinsGeneticsBlood CellsbiologyIntracellular Signaling Peptides and ProteinsHistone-Lysine N-MethyltransferaseReceptor Cross-TalkU937 CellsHistone acetyltransferaseFetal BloodHematopoiesisCell biologyGene Expression RegulationHistone methyltransferasebiology.proteinMyeloid-Lymphoid Leukemia ProteinH3K4me3K562 CellsMyeloid-Lymphoid Leukemia ProteinProtein BindingOncogene
researchProduct

Fine-tuning nucleophosmin in macrophage differentiation and activation

2011

Abstract M-CSF–driven differentiation of peripheral blood monocytes is one of the sources of tissue macrophages. In humans and mice, the differentiation process involves the activation of caspases that cleave a limited number of proteins. One of these proteins is nucleophosmin (NPM1), a multifunctional and ubiquitous protein. Here, we show that caspases activated in monocytes exposed to M-CSF cleave NPM1 at D213 to generate a 30-kDa N-terminal fragment. The protein is further cleaved into a 20-kDa fragment, which involves cathepsin B. NPM1 fragments contribute to the limited motility, migration, and phagocytosis capabilities of resting macrophages. Their activation with lipopolysaccharides …

Macrophage colony-stimulating factorLipopolysaccharidesCellular differentiationImmunologyBiochemistryProinflammatory cytokine03 medical and health sciencesPhagocytes Granulocytes and MyelopoiesisMice0302 clinical medicineAnimalsHumansNuclear proteinCaspaseCells Cultured030304 developmental biologyMice Knockout0303 health sciencesNucleophosminbiologyMacrophage Colony-Stimulating FactorMacrophagesNuclear ProteinsCell DifferentiationCell BiologyHematologyMacrophage ActivationNFKB1Molecular biologyCathepsinsCell biologyProtein Structure TertiaryCXCL1Mice Inbred C57BL030220 oncology & carcinogenesisCaspasesbiology.proteinNucleophosminProtein Processing Post-TranslationalBlood
researchProduct

Alpha-defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia.

2010

Abstract Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic disorder that occurs in elderly patients. One of the main diagnostic criteria is the accumulation of heterogeneous monocytes in the peripheral blood. We further explored this cellular heterogeneity and observed that part of the leukemic clone in the peripheral blood was made of immature dysplastic granulocytes with a CD14−/CD24+ phenotype. The proteome profile of these cells is dramatically distinct from that of CD14+/CD24− monocytes from CMML patients or healthy donors. More specifically, CD14−/CD24+ CMML cells synthesize and secrete large amounts of alpha-defensin 1-3 (HNP1-3). Recombinant HNPs inhibit macrophage co…

Macrophage colony-stimulating factoralpha-DefensinsCD14Cellular differentiationImmunologyLipopolysaccharide ReceptorsChronic myelomonocytic leukemiaUridine TriphosphateBiologyGranulocyteBiochemistryMonocytesUridine DiphosphatemedicineMacrophageHumansReceptors Purinergic P2MonocyteMacrophage Colony-Stimulating FactorMacrophagesCD24 AntigenCell DifferentiationLeukemia Myelomonocytic ChronicCell BiologyHematologymedicine.diseaseHaematopoiesismedicine.anatomical_structureCancer researchCytokinesGranulocytesBlood
researchProduct

The Histone Acetyl-Transferase MOZ Cooperates with the Histone Methyl-Transferase MLL to Regulate HOX Gene Expression in Human Hematopoietic Stem Cel…

2008

Abstract MOZ (MOnocytic leukaemia Zinc finger protein) (also called MYST3 or KAT6A) is a member of the MYST family of HATs which likely acetylate H4K16. The MLL (MixedLineageLeukemia) gene is a frequent target for recurrent chromosomal translocations found in AML and ALL. MLL (KMT2A) is a methyl-transferase targeting H3K4. It was shown that MOZ/CBP leukemia, as observed in MLL-rearranged leukemias, harbors abnormal levels of homeobox (HOX) genes expression. HOX transcription factors have a crucial function in hematopoiesis regulation. In addition, HOXA5, HOXA7, and HOXA9 are often considered to be pivotal HOX genes for MLL transformation, constituting downstream targets of MLL. In our study…

biologyImmunologyCell BiologyHematologyBiochemistryMYST3Molecular biologyHistone H3Histonehemic and lymphatic diseasesHistone methyltransferaseHistone methylationbiology.proteinH3K4me3WDR5Hox geneneoplasmsBlood
researchProduct

Dual regulation of SPI1/PU.1 transcription factor by heat shock factor 1 (HSF1) during macrophage differentiation of monocytes

2014

International audience; : In addition to their cytoprotective role in stressful conditions, heat shock proteins (HSPs) are involved in specific differentiation pathways, e.g. we have identified a role for HSP90 in macrophage differentiation of human peripheral blood monocytes exposed to Macrophage Colony-Stimulating Factor (M-CSF). Here, we show that deletion of the main transcription factor involved in heat shock gene regulation, heat shock factor 1 (HSF1), affects M-CSF-driven differentiation of mouse bone marrow cells. HSF1 transiently accumulates in the nucleus of human monocytes undergoing macrophage differentiation, including M-CSF-treated peripheral blood monocytes and phorbol ester-…

Cancer ResearchCellular differentiation[SDV]Life Sciences [q-bio][SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]Mice0302 clinical medicineHeat Shock Transcription FactorsHSF1[SDV.BDD]Life Sciences [q-bio]/Development BiologyCells CulturedComputingMilieux_MISCELLANEOUSRegulation of gene expression0303 health sciencesMice Inbred BALB C[SDV.MHEP.HEM]Life Sciences [q-bio]/Human health and pathology/HematologyHematology[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]3. Good healthDNA-Binding ProteinsOncology030220 oncology & carcinogenesismonocytesProteasome Endopeptidase ComplexAntigens Differentiation MyelomonocyticReceptors Cell Surface[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiology03 medical and health sciencesAntigens CDHeat shock proteinProto-Oncogene Proteinstranscription factorsAnimalsHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[ SDV.BDD ] Life Sciences [q-bio]/Development BiologyTranscription factor030304 developmental biologySPI1Macrophagesheat-shock proteinsfungi[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMolecular biologyHsp70Heat shock factorMice Inbred C57BLcell differentiationGene Expression RegulationTrans-Activators[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct