6533b824fe1ef96bd1280b5f

RESEARCH PRODUCT

Crosstalk between leukemia-associated proteins MOZ and MLL regulates HOX gene expression in human cord blood CD34+ cells

Eric SolaryLaurent DelvaJérôme PaggettiAnne LargeotRomain AucagneArnaud JacquelBrice LagrangeJ.-n. BastieXiang-jiao Yang

subject

Cancer ResearchAntigens CD34HistonesHistone H3hemic and lymphatic diseasesHistone methylationGeneticsHumansWDR5Tissue DistributionPromoter Regions GeneticHox geneneoplasmsMolecular BiologyCells CulturedHistone AcetyltransferasesHomeodomain ProteinsGeneticsBlood CellsbiologyIntracellular Signaling Peptides and ProteinsHistone-Lysine N-MethyltransferaseReceptor Cross-TalkU937 CellsHistone acetyltransferaseFetal BloodHematopoiesisCell biologyGene Expression RegulationHistone methyltransferasebiology.proteinMyeloid-Lymphoid Leukemia ProteinH3K4me3K562 CellsMyeloid-Lymphoid Leukemia ProteinProtein Binding

description

MOZ and MLL, encoding a histone acetyltransferase (HAT) and a histone methyltransferase, respectively, are targets for recurrent chromosomal translocations found in acute myeloblastic or lymphoblastic leukemia. In MOZ (MOnocytic leukemia Zinc-finger protein)/CBP- or mixed lineage leukemia (MLL)-rearranged leukemias, abnormal levels of HOX transcription factors have been found to be critical for leukemogenesis. We show that MOZ and MLL cooperate to regulate these key genes in human cord blood CD34+ cells. These chromatin-modifying enzymes interact, colocalize and functionally cooperate, and both are recruited to multiple HOX promoters. We also found that WDR5, an adaptor protein essential for lysine 4 trimethylation of histone H3 (H3K4me3) by MLL, colocalizes and interacts with MOZ. We detected the binding of the HAT MOZ to H3K4me3, thus linking histone methylation to acetylation. In CD34+ cells, depletion of MLL causes release of MOZ from HOX promoters, which is correlated to defective histone activation marks, leading to repression of HOX gene expression and alteration of commitment of CD34+ cells into myeloid progenitors. Thus, our results unveil the role of the interaction between MOZ and MLL in CD34+ cells in which both proteins have a critical role in hematopoietic cell-fate decision, suggesting a new molecular mechanism by which MOZ or MLL deregulation leads to leukemogenesis.

https://doi.org/10.1038/onc.2010.254