0000000000277366
AUTHOR
Alba Chimirri
Novel Potent Anticonvulsant Agent Containing a Tetrahydroisoquinoline Skeleton
In our studies on the development of new anticonvulsants, we planned the synthesis of N-substituted 1,2,3,4-tetrahydroisoquinolines to explore the structure-activity relationships. All derivatives were evaluated against audiogenic seizures in DBA/2 mice, and the 1-(4'-bromophenyl)-6,7-dimethoxy-2-(piperidin-1-ylacetyl) derivative (26) showed the highest activity with a potency comparable to that of talampanel, the only noncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonist in clinical trials as an anticonvulsant agent. Electrophysiological experiments indicated that 26 acts as noncompetitive AMPA receptor modulator.
Synthesis, resolution, stereochemistry, and molecular modeling of (R)- and (S)-2-acetyl-1-(4’-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline AMPAR antagonists
Abstract Recently we identified ( R , S )-2-acetyl-1-(4′-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline ( 6 ) as a potent non-competitive AMPA receptor antagonist able to prevent epileptic seizures. We report here the optimized synthesis of compound 6 , its resolution by chiral preparative HPLC, and the absolute configuration of ( R )-enantiomer established by X-ray diffractometry. The biological tests of the single enantiomers revealed that higher anticonvulsant and antagonistic effects reside in ( R )-enantiomer as also suggested by molecular modeling studies.
Synthesis and anti-HIV activity of 2,3-diaryl-1,3-thiazolidin-4-ones
Several 1,3-thiazolidin-4-ones bearing a 2,6-dihalophenyl group at C-2 and a variously substituted phenyl ring at N-3 have been synthesized and tested as anti-HIV agents. The results of the in vitro tests showed that some of them proved to be effective inhibitors of HIV-1 replication.
De novo drug design and synthesis of new HIV-1 NNRTIs
Synthesis and anti-HIV activity of 2,3-diaryl-1,3-thiazolidin-4-(thi)one derivatives.
Several 2,3-diaryl-1,3-thiazolidine-4-thione derivatives and 2,3-diaryl-1,3-thiazolidin-4-ones bearing a methyl group at C-5 position have been synthesized and tested as anti-HIV agents. The results of the in vitro tests showed that some of them proved to be effective inhibitors of HIV-1 replication.
Optimization of a LC method for the enantioseparation of a non-competitive glutamate receptor antagonist, by experimental design methodology
Abstract The aim of this work was to obtain the direct optical resolution of a new glutamate receptor antagonist (( p -chloro)1-aryl-6,7,-dimethoxy-1,2,3,4-tetrahydroisoquinoline, PS3), by liquid chromatography on Chiralcel ® OD column. A response surface methodology (RSM) was employed to optimize the enantiomeric separation of the racemate with the lowest number of experiments; in particular, a face-centred design (FCD) was applied to evaluate the influence of critical parameters on the experimental response. Furthermore, in order to find the best compromise between several responses, a multicriteria decision-making approach, the Derringer's desirability function, was successful to simulta…
2-(2,6-Dihalophenyl)-3-(pyrimidin-2-yl)-1,3-thiazolidin-4-ones as non-nucleoside HIV-1 reverse transcriptase inhibitors.
Several 1,3-thiazolidin-4-ones bearing a 2,6-dihalophenyl group at C-2 and a substituted pyrimidin-2-yl ring at the N-3 were synthesised and evaluated as anti-HIV agents. The results of the in vitro tests showed that some of them were highly effective inhibitors of human immunodeficiency virus type-1 (HIV-1) replication at 10–40 nM concentrations with minimal cytotoxicity. Structure–activity relationship studies revealed that the nature of the substituents at the 2 and 3 positions of the thiazolidinone nucleus had a significant impact on the in vitro anti-HIV activity of this class of potent antiretroviral agents. The compounds had significantly reduced activity against the characteristic N…
Synthesis of new 2,3-diaryl-1,3-thiazolidin-4-ones as anti-HIV agents
Several 2,3-diaryl-1,3-thiazolidin-4-ones were synthesized and evaluated as anti-HIV agents. The results of the in vitro tests showed that some of them were highly effective inhibitors of HIV-1 replication at 30-50 nM concentrations with minimal cytotoxicity, thereby acting as non-nucleoside HIV-1 reverse transcriptase inhibitors (NNRTIs).