0000000000278352

AUTHOR

Arnold R. Kriegstein

Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.

New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus(1-5). This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease(6-10). In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day(11), whereas other studies find many fewer putative new neurons(12-14). Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal …

research product

Immature excitatory neurons develop during adolescence in the human amygdala.

The human amygdala grows during childhood, and its abnormal development is linked to mood disorders. The primate amygdala contains a large population of immature neurons in the paralaminar nuclei (PL), suggesting protracted development and possibly neurogenesis. Here we studied human PL development from embryonic stages to adulthood. The PL develops next to the caudal ganglionic eminence, which generates inhibitory interneurons, yet most PL neurons express excitatory markers. In children, most PL cells are immature (DCX+PSA-NCAM+), and during adolescence many transition into mature (TBR1+VGLUT2+) neurons. Immature PL neurons persist into old age, yet local progenitor proliferation sharply d…

research product

Does Adult Neurogenesis Persist in the Human Hippocampus?

research product

Axonal control of the adult neural stem cell niche.

SummaryThe ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSCs) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that acti…

research product