0000000000278385

AUTHOR

Annick Fraichard

Influence of ATPase activity on PPi dependent H+-transport in tonoplast vesicles of Acer pseudoplatanus

Abstract Tonoplast H + -ATPase and H + -pyrophosphatase (H + -PPase) were previously characterized in Acer pseudoplatanus cells (A. Pugin et al., Plant Sci., 73 (1991) 23–34; A. Fraichard et al., Plant Physiol. Biochem., 31 (1993) 349–359). The present study concerns the relationships between these two enzymes in vitro. ATP and PPi hydrolysis were additive and the inhibition of one did not affect the activity of the second one. ATP and PPi H + -transports were also additive. The H + -PPase inhibition did not change ATP-dependent H + -transport but H + -ATPase inhibition inhibited the PPi dependent H + -transport. Because H + -PPase was reported to transport H + and K + into the vacuole (Dav…

research product

Identification of HSP90 as a new GABARAPL1 (GEC1)-interacting protein

GABARAPL1 belongs to the small family of GABARAP proteins (including GABARAP, GABARAPL1 and GABARAPL2/GATE-16), one of the two subfamilies of the yeast Atg8 orthologue. GABARAPL1 is involved in the intracellular transport of receptors, via an interaction with tubulin and GABA(A) or kappa opioid receptors, and also participates in autophagy and cell proliferation. In the present study, we identify the HSP90 protein as a novel interaction partner for GABARAPL1 using GST pull-down, mass spectrometry and coimmunoprecipitation experiments. GABARAPL1 and HSP90 partially colocalize in MCF-7 breast cancer cells overexpressed Dsred-GABARAPL1 and in rat brain. Moreover, treatment of MCF-7 cells overe…

research product

The Tonoplast H+ -ATPase of Acer pseudoplatanus is a vacuolar-type ATPase that operates with a phosphoenzyme intermediate

The tonoplast H+-ATPase of Acer pseudoplatanus has been purified from isolated vacuoles. After solubilization, the purification procedure included size-exclusion and ion-exchange chromatography. The H+-ATPase consists of at least eight subunits, of 95, 66, 56, 54, 40, 38, 31, and 16 kD, that did not cross-react with polyclonal antibodies raised to the plasmalemma ATPase of Arabidopsis thaliana. The 66-kD polypeptide cross-reacted with monoclonal antibodies raised to the 70-kD subunit of the vacuolar H+-ATPase of oat roots. The functional molecular size of the tonoplast H+-ATPase, analyzed in situ by radiation inactivation, was found to be around 400 kD. The 66-kD subunit of the tonoplast H+…

research product