0000000000280483
AUTHOR
J. M. Sears
γ-ray spectroscopy of neutron-deficientTe110. II. High-spin smooth-terminating structures
High-spin states have been populated in Te-110(52) via Ni-58(Ni-58,alpha 2p gamma) reactions at 240 and 250 MeV. The Gammasphere gamma-ray spectrometer was used in conjunction with the Microball charged-particle detector. The high-spin (I>30) collective level scheme of Te-110, up to similar to 45h, is discussed in this paper. Four new decoupled (Delta I=2) high-spin structures have been observed for the first time, together with two strongly coupled (Delta I=1) bands. These bands all show the characteristics of smooth band termination, and are discussed within the framework of the cranked Nilsson-Strutinsky approach.
Evidence for Magnetic Rotation in the Light Tin Region
Lifetimes have been measured for three M1 bands in light Sn/Cd nuclei using the DSAM technique. B(M1) values deduced from these measurements show a rapid decrease with increasing spin for a given configuration. The results have been compared with both Tilted axis cranking and semi-empirical model calculations. These suggest that the shears mechanism is present in this mass region, and that the band in 106Sn appears to be the first example of almost pure magnetic rotation.
Evidence for Shears Bands in108Cd
High-spin states were populated in ${}^{108}\mathrm{Cd}$ using the ${}^{96}\mathrm{Zr}{(}^{16}\mathrm{O},4n)$ reaction at a beam energy of 72 MeV. Two magnetic dipole bands have been observed, both of which contain weak $E2$ crossover transitions. Lifetimes for the stronger of the two bands were measured via the Doppler shift attenuation method. The configuration assignment for this band has been determined from comparison with tilted axis cranking model calculations to be $\ensuremath{\pi}[{g}_{9/2}^{\ensuremath{-}3}{g}_{7/2}]\ensuremath{\bigotimes}\ensuremath{\nu}[{h}_{11/2}{(g}_{7/2}{d}_{5/2}{)}^{1}]$ and $\ensuremath{\pi}[{g}_{9/2}^{\ensuremath{-}3}{g}_{7/2}]\ensuremath{\bigotimes}\ensu…
Identification of excited states in119Ba
Excited states have been identified in the very neutron-deficient ${}^{119}\mathrm{Ba}$ nucleus. Two bands have been observed, which are likely to be based on ${h}_{11/2}$ and ${(g}_{7/2}{d}_{5/2})$ neutron orbitals. Despite this being the first observation of excited states in ${}^{119}\mathrm{Ba},$ the bands extend to $(75/2)\ensuremath{\Elzxh}$ and $(79/2)\ensuremath{\Elzxh},$ respectively. The bands have been assigned to ${}^{119}\mathrm{Ba}$ using gamma-recoil and gamma--x-ray coincidences. Several quasiparticle alignments have been identified, involving neutron ${(h}_{11/2}{)}^{2}$ and proton ${(h}_{11/2}{)}^{2}$ aligned configurations. Furthermore, the bands show features which are r…
Shears Mechanism in theA∼110Region
Lifetimes of states in a rotational-like $M1$ band in ${}^{110}\mathrm{Cd}$ have been determined through a Doppler-shift attenuation method measurement performed with the Gammasphere array. The deduced $B(M1)$ values, which agree well with the predictions of the tilted axis cranking model, clearly confirm that it has the character of a shears band. Using a semiclassical scheme of the coupling of two long $j$ vectors we deduce information on the strength and form of the effective interaction between the constituent nucleons. These results are the first definitive evidence of the shears mechanism and ``magnetic rotation'' in this mass region.
Magnetic properties of smooth terminating dipole bands in 110,112Te
Three strongly coupled sequences have been established in Te-110,Te-112 up to high spins. They are interpreted in terms of deformed structures built on proton 1-particle-1-hole excitations that reach termination at I similar to 40h. This is the first observation of smooth terminating dipole structures in this mass region. Lifetime measurements have allowed the extraction of experimental B(M 1; 1 -> I - 1) and B(E2; I -> I - 2) reduced transition rates for one of the dipole bands in Te-110. The results support the deformed interpretation. (c) 2006 Elsevier B.V. All rights reserved.
Smooth terminating bands inTe112: Particle-hole induced collectivity
The Gammasphere spectrometer, in conjunction with the Microball charged-particle array, was used to investigate high-spin states in Te-112 via Ni-58(Ni-58, 4p gamma) reactions at 240 and 250 MeV. Several smooth terminating bands were established, and lifetime measurements were performed for the strongest one using the Doppler-shift attenuation method. Results obtained in the spin range 18-32h yield a transition quadrupole moment of 4.0 +/- 0.5eb, which corresponds to a quadrupole deformation epsilon(2)=0.26 +/- 0.03; this value is significantly larger than the ground-state deformation of tellurium isotopes. It was also possible to extract a transition quadrupole moment for the yrast band in…
Shears mechanism in109Cd
Lifetimes of high-spin states in two $\ensuremath{\Delta}I=1$ bands and one $\ensuremath{\Delta}I=2$ band in ${}^{109}\mathrm{Cd}$ have been measured using the Doppler shift attenuation method in an experiment performed using the ${}^{96}\mathrm{Zr}{(}^{18}\mathrm{O},5n)$ reaction with the GAMMASPHERE array. Experimental total angular momenta and reduced transition strengths for both $\ensuremath{\Delta}I=1$ bands were compared with tilted axis cranking (shears mechanism) predictions and the $\ensuremath{\Delta}I=2$ band with principal axis cranking predictions, based on configurations involving two proton ${g}_{9/2}$ holes and one or three valence quasineutrons from the ${h}_{11/2}$ and mi…