0000000000281309

AUTHOR

Omar Zanusso

Functional renormalization group of the non-linear sigma model and the O(N) universality class

We study the renormalization group flow of the O(N) non-linear sigma model in arbitrary dimensions. The effective action of the model is truncated to fourth order in the derivative expansion and the flow is obtained by combining the non-perturbative renormalization group and the background field method. We investigate the flow in three dimensions and analyze the phase structure for arbitrary N. The corresponding results about the critical properties of the models will serve as a reference for upcoming simulations with the Monte-Carlo renormalization group.

research product

RG flows of Quantum Einstein Gravity in the linear-geometric approximation

We construct a novel Wetterich-type functional renormalization group equation for gravity which encodes the gravitational degrees of freedom in terms of gauge-invariant fluctuation fields. Applying a linear-geometric approximation the structure of the new flow equation is considerably simpler than the standard Quantum Einstein Gravity construction since only transverse-traceless and trace part of the metric fluctuations propagate in loops. The geometric flow reproduces the phase-diagram of the Einstein-Hilbert truncation including the non-Gaussian fixed point essential for Asymptotic Safety. Extending the analysis to the polynomial $f(R)$-approximation establishes that this fixed point come…

research product

Fluid membranes and2dquantum gravity

We study the RG flow of two dimensional (fluid) membranes embedded in Euclidean D-dimensional space using functional RG methods based on the effective average action. By considering a truncation ansatz for the effective average action with both extrinsic and intrinsic curvature terms we derive a system of beta functions for the running surface tension, bending rigidity and Gaussian rigidity. We look for non-trivial fixed points but we find no evidence for a crumpling transition at $T\neq0$. Finally, we propose to identify the $D\rightarrow 0$ limit of the theory with two dimensional quantum gravity. In this limit we derive new beta functions for both cosmological and Newton's constants.

research product

Fractal geometry of higher derivative gravity

We determine the scaling properties of geometric operators such as lengths, areas, and volumes in models of higher derivative quantum gravity by renormalizing appropriate composite operators. We use these results to deduce the fractal dimensions of such hypersurfaces embedded in a quantum spacetime at very small distances.

research product