6533b870fe1ef96bd12cf1de
RESEARCH PRODUCT
Fractal geometry of higher derivative gravity
Carlo PaganiCarlo PaganiOmar ZanussoMaximilian Beckersubject
Gravity (chemistry)geometryoperator: geometricalGeneral Physics and AstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)derivative: highQuantum spacetimeGravitation and Astrophysics01 natural sciencesFractal dimensionGeneral Relativity and Quantum CosmologyGravitationGeneral Relativity and Quantum CosmologyFractal0103 physical sciencesfractal: dimension010306 general physicsScalingEffective actionPhysicsMathematical analysisscalingtensor: Weylsymmetry: Weyleffective actionspace-timequantum gravitygravitation[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Quantum gravityoperator: compositedescription
We determine the scaling properties of geometric operators such as lengths, areas, and volumes in models of higher derivative quantum gravity by renormalizing appropriate composite operators. We use these results to deduce the fractal dimensions of such hypersurfaces embedded in a quantum spacetime at very small distances.
year | journal | country | edition | language |
---|---|---|---|---|
2019-12-04 |