Geometric operators in the asymptotic safety scenario for quantum gravity
We consider geometric operators, such as the geodesic length and the volume of hypersurfaces, in the context of the Asymptotic Safety scenario for quantum gravity. We discuss the role of these operators from the Asymptotic Safety perspective, and compute their anomalous dimensions within the Einstein-Hilbert truncation. We also discuss certain subtleties arising in the definition of such geometric operators. Our results hint to an effective dimensional reduction of the considered geometric operators.
Background Independent Field Quantization with Sequences of Gravity-Coupled Approximants
We outline, test, and apply a new scheme for nonpertubative analyses of quantized field systems in contact with dynamical gravity. While gravity is treated classically in the present paper, the approach lends itself for a generalization to full Quantum Gravity. We advocate the point of view that quantum field theories should be regularized by sequences of quasi-physical systems comprising a well defined number of the field's degrees of freedom. In dependence on this number, each system backreacts autonomously and self-consistently on the gravitational field. In this approach, the limit which removes the regularization automatically generates the physically correct spacetime geometry, i.e., …
Fractal geometry of higher derivative gravity
We determine the scaling properties of geometric operators such as lengths, areas, and volumes in models of higher derivative quantum gravity by renormalizing appropriate composite operators. We use these results to deduce the fractal dimensions of such hypersurfaces embedded in a quantum spacetime at very small distances.