The impact of irreversible image data compression on post-processing algorithms in computed tomography
PURPOSE: We aimed to evaluate the influence of irreversible image compression at varying levels on image post-processing algorithms (3D volume rendering of angiographs, computer-assisted detection of lung nodules, segmentation and volumetry of liver lesions, and automated evaluation of functional cardiac imaging) in computed tomography (CT). METHODS: Uncompressed CT image data (30 angiographs of the lower limbs, 38 lung exams, 20 liver exams and 30 cardiac exams) were anonymized and subsequently compressed using the JPEG2000 algorithm with compression ratios of 8:1, 10:1, and 15:1. Volume renderings of CT angiographies obtained from compressed and uncompressed data were compared using objec…