0000000000282128
AUTHOR
Biao Kang
Acid‐Labile Amphiphilic PEO‐ b ‐PPO‐ b ‐PEO Copolymers: Degradable Poloxamer Analogs
Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molec…
Carbohydrate-Based Nanocarriers Exhibiting Specific Cell Targeting with Minimum Influence from the Protein Corona.
Whenever nanoparticles encounter biological fluids like blood, proteins adsorb on their surface and form a so-called protein corona. Although its importance is widely accepted, information on the influence of surface functionalization of nanocarriers on the protein corona is still sparse, especially concerning how the functionalization of PEGylated nanocarriers with targeting agents will affect protein corona formation and how the protein corona may in turn influence the targeting effect. Herein, hydroxyethyl starch nanocarriers (HES-NCs) were prepared, PEGylated, and modified on the outer PEG layer with mannose to target dendritic cells (DCs). Their interaction with human plasma was then s…
Tailoring the stealth properties of biocompatible polysaccharide nanocontainers.
Fundamental development of a biocompatible and degradable nanocarrier platform based on hydroxyethyl starch (HES) is reported. HES is a derivative of starch and possesses both high biocompatibility and improved stability against enzymatic degradation; it is used to prepare nanocapsules via the polyaddition reaction at the interface of water nanodroplets dispersed in an organic miniemulsion. The synthesized hollow nanocapsules can be loaded with hydrophilic guests in its aqueous core, tuned in size, chemically functionalized in various pathways, and show high shelf life stability. The surface of the HES nanocapsules is further functionalized with poly(ethylene glycol) via different chemistri…
Kohlenhydrat-basierte Nanocarrier mit spezifischem Zell-Targeting und minimalem Einfluss durch die Proteinkorona
Sobald Nanopartikel mit biologischen Flussigkeiten wie Blut in Kontakt kommen, adsorbieren Proteine auf ihrer Oberflache, welche die sogenannte Proteinkorona ausbilden. Die Wichtigkeit dieser Proteinhulle ist weitgehend anerkannt, jedoch untersuchen nur wenige Studien den Einfluss von Oberflachenfunktionalisierung der Nanocarrier auf die Proteinkorona. Vor allem die Variation der Proteinkorona von PEGylierten und zusatzlich mit Targeting-Molekulen versehenen Nanotragern und der Einfluss auf das Targeting sind nicht bekannt. Hydroxyethylstarke-Nanocarrier (HES-NCs) wurden synthetisiert, anschliesend PEGyliert und zusatzlich (“on top”) mit Mannose funktionalisiert, um dendritische Zellen (DCs…
Carbohydrate nanocarriers in biomedical applications: functionalization and construction
The specific targeting of either tumor cells or immune cells in vivo by carefully designed and appropriately surface-functionalized nanocarriers may become an effective therapeutic treatment for a variety of diseases. Carbohydrates, which are prominent biomolecules, have shown their outstanding ability in balancing the biocompatibility, stability, biodegradability, and functionality of nanocarriers. The recent applications of sugar (mono/oligosaccharides and/or polysaccharides) for the development of nanomedicines are summarized in this review, including the application of carbohydrates for the surface-functionalization of various nanocarriers and for the construction of the nanocarrier its…
ChemInform Abstract: Carbohydrate Nanocarriers in Biomedical Applications: Functionalization and Construction
The specific targeting of either tumor cells or immune cells in vivo by carefully designed and appropriately surface-functionalized nanocarriers may become an effective therapeutic treatment for a variety of diseases. Carbohydrates, which are prominent biomolecules, have shown their outstanding ability in balancing the biocompatibility, stability, biodegradability, and functionality of nanocarriers. The recent applications of sugar (mono/oligosaccharides and/or polysaccharides) for the development of nanomedicines are summarized in this review, including the application of carbohydrates for the surface-functionalization of various nanocarriers and for the construction of the nanocarrier its…