0000000000282177

AUTHOR

Fatih Nar

0000-0002-3003-8136

Nonlinear Cook distance for Anomalous Change Detection

In this work we propose a method to find anomalous changes in remote sensing images based on the chronochrome approach. A regressor between images is used to discover the most {\em influential points} in the observed data. Typically, the pixels with largest residuals are decided to be anomalous changes. In order to find the anomalous pixels we consider the Cook distance and propose its nonlinear extension using random Fourier features as an efficient nonlinear measure of impact. Good empirical performance is shown over different multispectral images both visually and quantitatively evaluated with ROC curves.

research product

Randomized Rx For Target Detection

This work tackles the target detection problem through the well-known global RX method. The RX method models the clutter as a multivariate Gaussian distribution, and has been extended to nonlinear distributions using kernel methods. While the kernel RX can cope with complex clutters, it requires a considerable amount of computational resources as the number of clutter pixels gets larger. Here we propose random Fourier features to approximate the Gaussian kernel in kernel RX and consequently our development keep the accuracy of the nonlinearity while reducing the computational cost which is now controlled by an hyperparameter. Results over both synthetic and real-world image target detection…

research product

Sparsity-Driven Digital Terrain Model Extraction

We here introduce an automatic Digital Terrain Model (DTM) extraction method. The proposed sparsity-driven DTM extractor (SD-DTM) takes a high-resolution Digital Surface Model (DSM) as an input and constructs a high-resolution DTM using the variational framework. To obtain an accurate DTM, an iterative approach is proposed for the minimization of the target variational cost function. Accuracy of the SD-DTM is shown in a real-world DSM data set. We show the efficiency and effectiveness of the approach both visually and quantitatively via residual plots in illustrative terrain types.

research product

Efficient Nonlinear RX Anomaly Detectors

Current anomaly detection algorithms are typically challenged by either accuracy or efficiency. More accurate nonlinear detectors are typically slow and not scalable. In this letter, we propose two families of techniques to improve the efficiency of the standard kernel Reed-Xiaoli (RX) method for anomaly detection by approximating the kernel function with either {\em data-independent} random Fourier features or {\em data-dependent} basis with the Nystr\"om approach. We compare all methods for both real multi- and hyperspectral images. We show that the proposed efficient methods have a lower computational cost and they perform similar (or outperform) the standard kernel RX algorithm thanks t…

research product

Efficient Kernel Cook's Distance for Remote Sensing Anomalous Change Detection

Detecting anomalous changes in remote sensing images is a challenging problem, where many approaches and techniques have been presented so far. We rely on the standard field of multivariate statistics of diagnostic measures, which are concerned about the characterization of distributions, detection of anomalies, extreme events, and changes. One useful tool to detect multivariate anomalies is the celebrated Cook's distance. Instead of assuming a linear relationship, we present a novel kernelized version of the Cook's distance to address anomalous change detection in remote sensing images. Due to the large computational burden involved in the direct kernelization, and the lack of out-…

research product