0000000000283197

AUTHOR

Nozomi Sato

showing 5 related works from this author

First ionization potential of the heaviest actinide lawrencium, element 103

2016

The first ionization potential (IP1 ) of element 103, lawrencium (Lr), has been successfully determined for the first time by using a newly developed method based on a surface ionization process. The measured IP 1 value is 4.9630.08 0.07 eV. This value is the smallest among those of actinide elements and is in excellent agreement with the value of 4.963(15) eV predicted by state-of-the-art relativistic calculations also performed in this work. Our results strongly support that the Lr atom has an electronic configuration of [Rn]7s 2 5f 14 7p 1 1/2 , which is influenced by strong relativistic effects. The present work provides a reliable benchmark for theoretical calculations and also opens t…

PhysicsPhysicsQC1-99905 social sciences050301 educationThermal ionizationchemistry.chemical_elementActinide010403 inorganic & nuclear chemistry01 natural sciences0104 chemical scienceschemistryNuclear Physics - TheoryAtomNuclear Physics - Experimentddc:530Atomic numberElectron configurationAtomic physicsIonization energyRelativistic quantum chemistry0503 educationLawrencium
researchProduct

First successful ionization of Lr (Z = 103) by a surface-ionization technique.

2013

We have developed a surface ionization ion-source as part of the JAEA-ISOL (Isotope Separator On-Line) setup, which is coupled to a He/CdI2 gas-jet transport system to determine the first ionization potential of the heaviest actinide lawrencium (Lr, Z = 103). The new ion-source is an improved version of the previous source that provided good ionization efficiencies for lanthanides. An additional filament was newly installed to give better control over its operation. We report, here, on the development of the new gas-jet coupled surface ion-source and on the first successful ionization and mass separation of 27-s (256)Lr produced in the (249)Cf + (11)B reaction.

Materials sciencechemistryIonizationThermal ionizationchemistry.chemical_elementActinideIonization energyAtomic physicsMolar ionization energies of the elementsInstrumentationIon sourceLawrenciumAtmospheric-pressure laser ionizationThe Review of scientific instruments
researchProduct

Measurement of the Md3+/Md2+ Reduction Potential Studied with Flow Electrolytic Chromatography

2013

The reduction behavior of mendelevium (Md) was studied using a flow electrolytic chromatography apparatus. By application of the appropriate potentials on the chromatography column, the more stable Md(3+) is reduced to Md(2+). The reduction potential of the Md(3+) + e(-) → Md(2+) couple was determined to be -0.16 ± 0.05 V versus a normal hydrogen electrode.

ChromatographyStandard hydrogen electrodeFlow (psychology)Analytical chemistrychemistry.chemical_elementElectrolyteIonMendeleviumInorganic ChemistryReduction (complexity)chemistryPhysical and Theoretical ChemistryLuminescenceChromatography columnInorganic Chemistry
researchProduct

Measurement of the first ionization potential of lawrencium (element 103)

2015

Lawrencium, with atomic number 103, has an isotope with a half-life of 27 seconds; even so, its first ionization potential has now been measured on an atom-at-a-time scale and agrees well with state-of-the-art theoretical calculations that include relativistic effects. The most dramatic modern revision of Mendeleev's periodic table of elements came in 1944 when Glenn T. Seaborg placed a new series of elements, the actinides (atomic numbers 89–103), below the lanthanides. In this issue of Nature, Yuichiro Nagame and colleagues report the first measurement of one of the basic atomic properties of element 103 (lawrencium), namely its first ionization potential. Lawrencium is only accessible vi…

MultidisciplinaryChemistryPeriodic trendsAtomchemistry.chemical_elementTransactinide elementAtomic numberElectron configurationAtomic physicsRelativistic quantum chemistryValence electronChemical Physics and ChemistryLawrencium
researchProduct

First online operation of TRIGA-TRAP

2020

Abstract We report on the successful coupling of the Penning-trap mass spectrometry setup TRIGA-TRAP to the research reactor TRIGA Mainz. This offers the possibility to perform direct high-precision mass measurements of short-lived nuclei produced in neutron-induced fission of a 235 U target located near the reactor core. An aerosol-based gas-jet system is used for efficient transport of short-lived neutron-rich nuclei from the target chamber to a surface ion source. In conjunction with new ion optics and extended beam monitoring capabilities, the experimental setup has been fully commissioned. The design of the surface ion source, efficiency studies and first results are presented.

PhysicsSpeichertechnik - Abteilung BlaumNuclear and High Energy PhysicsFission products010308 nuclear & particles physicsFissionNuclear engineeringNuclear TheoryMass spectrometry01 natural sciencesIon sourceTRIGAIonNuclear reactor core0103 physical sciencesResearch reactorNuclear Experiment010306 general physicsInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct