0000000000283311

AUTHOR

Miguel R. Pecci-lloret

0000-0002-8579-6903

showing 4 related works from this author

Thermo-setting glass ionomer cements promote variable biological responses of human dental pulp stem cells.

2017

To evaluate the in vitro cytotoxicity of Equia Forte (GC, Tokyo, Japan) and Ionostar Molar (Voco, Cuxhaven, Germany) on human dental pulp stem cells (hDPSCs).hDPSCs isolated from third molars were exposed to several dilutions of Equia Forte and Ionostar Molar eluates (1/1, 1/2 and 1/4). These eluates were obtained by storing material samples in respective cell culture medium for 24h (n=40). hDPSCs in basal growth culture medium were the control. Cell viability and cell migration assays were performed using the MTT and wound-healing assays, respectively. Also, induction of apoptosis and changes in cell phenotype were evaluated by flow cytometry. Changes in cell morphology were analysed by im…

MolarMaterials scienceCell SurvivalGlass ionomer cementApoptosis02 engineering and technologyFlow cytometry03 medical and health sciences0302 clinical medicineCell MovementDental pulp stem cellsMaterials TestingmedicineHumansGeneral Materials ScienceViability assayGeneral DentistryCells CulturedDental Pulpmedicine.diagnostic_testCell growthSpectrophotometry AtomicStem CellsSpectrometry X-Ray Emission030206 dentistry021001 nanoscience & nanotechnologyFlow CytometryMolecular biologyStainingPhenotypeMechanics of MaterialsCell cultureGlass Ionomer CementsMicroscopy Electron ScanningMolar Third0210 nano-technologyDental materials : official publication of the Academy of Dental Materials
researchProduct

Biological interactions between calcium silicate-based endodontic biomaterials and periodontal ligament stem cells: A systematic review of in vitro s…

2021

Background Most recently, the biological interactions, that is cytocompatibility, cell differentiation and mineralization potential, between calcium silicate-based biomaterials and periodontal ligament stem cells (PDLSCs) have been studied at an in vitro level, in order to predict their clinical behaviour during endodontic procedures involving direct contact with periodontal tissues, namely root canal treatment, endodontic surgery and regenerative endodontic treatment. Objective The aim of the present systematic review was to present a qualitative synthesis of available in vitro studies assessing the biological interaction of PDLSCs and calcium silicate-based biomaterials. Methodology The p…

medicine.medical_specialtyPeriodontal ligament stem cellsBiocompatibilitybusiness.industryPeriodontal Ligamentmedicine.medical_treatmentSilicatesStem CellsDentistryBiocompatible MaterialsStem-cell therapyCalcium CompoundsEndodonticsIn vitroRoot Canal Filling Materialschemistry.chemical_compoundchemistryBiological propertyCalcium silicatemedicineStem cellbusinessGeneral DentistryInternational endodontic journalREFERENCES
researchProduct

In Vitro Evaluation of the Biological Effects of ACTIVA Kids BioACTIVE Restorative, Ionolux, and Riva Light Cure on Human Dental Pulp Stem Cells

2019

This study aimed to analyze the biological effects of three new bioactive materials on cell survival, migration, morphology, and attachment in vitro. ACTIVA Kids BioACTIVE Restorative (Pulpdent, Watertown, MA, USA) (Activa), Ionolux (Voco, Cuxhaven, Germany), and Riva Light Cure UV (SDI, Bayswater, Australia) (Riva) were handled and conditioned with a serum-free culture medium. Stem cells from human dental pulp (hDPSCs) were exposed to material extracts, and metabolic activity, cell migration, and cell morphology were evaluated. Cell adhesion to the different materials was analyzed by scanning electron microscopy (SEM). The chemical composition of the materials was evaluated by energy-dispe…

Dental materialsCytotoxicityCellGlass ionomer cement02 engineering and technologyCell morphologylcsh:TechnologyOdontologiaArticleBiological properties03 medical and health sciences0302 clinical medicineDental pulp stem cellsdental pulp cellsmedicinedental materialsGeneral Materials ScienceViability assayBioactive materialslcsh:MicroscopyCell adhesionlcsh:QC120-168.85biological propertieslcsh:QH201-278.5lcsh:TChemistrybioactive materialsCell migration030206 dentistry021001 nanoscience & nanotechnologyMolecular biologyDental pulp cellsmedicine.anatomical_structurelcsh:TA1-2040cytotoxicitylcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringStem celllcsh:Engineering (General). Civil engineering (General)0210 nano-technologylcsh:TK1-9971Materials
researchProduct

Comparative Cytocompatibility and Mineralization Potential of Bio-C Sealer and TotalFill BC Sealer

2019

The aim of this study was to investigate the cytocompatibility and mineralization potential of two premixed hydraulic endodontic sealers compared with an epoxy resin-based root canal sealer. The cellular responses and mineralization capacity were studied in human periodontal ligament stem cells (hPDLSCs) that were exposed to premixed hydraulic sealers, Bio-C Sealer (Angelus, Londr&iacute

Root canalendodontic sealers02 engineering and technologyCell morphologylcsh:TechnologyOdontologiaMineralization (biology)Article03 medical and health sciencesbiocompatibility0302 clinical medicineStatistical analysesmedicineGeneral Materials ScienceViability assaylcsh:Microscopylcsh:QC120-168.85lcsh:QH201-278.5lcsh:TChemistry030206 dentistry021001 nanoscience & nanotechnologymedicine.anatomical_structurelcsh:TA1-2040bioceramictricalcium silicatelcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)0210 nano-technologylcsh:TK1-9971periodontal ligament stem cellsTricalcium silicateNuclear chemistryMaterials
researchProduct