6533b837fe1ef96bd12a27e8

RESEARCH PRODUCT

In Vitro Evaluation of the Biological Effects of ACTIVA Kids BioACTIVE Restorative, Ionolux, and Riva Light Cure on Human Dental Pulp Stem Cells

Miguel R. Pecci-lloretPablo Castelo‐bazFrancisco Javier Rodríguez-lozanoMaría Pilar Pecci-lloretDavid García-bernalJulia Guerrero-gironésSergio López-garcíaR. E. Oñate-sánchez

subject

Dental materialsCytotoxicityCellGlass ionomer cement02 engineering and technologyCell morphologylcsh:TechnologyOdontologiaArticleBiological properties03 medical and health sciences0302 clinical medicineDental pulp stem cellsdental pulp cellsmedicinedental materialsGeneral Materials ScienceViability assayBioactive materialslcsh:MicroscopyCell adhesionlcsh:QC120-168.85biological propertieslcsh:QH201-278.5lcsh:TChemistrybioactive materialsCell migration030206 dentistry021001 nanoscience & nanotechnologyMolecular biologyDental pulp cellsmedicine.anatomical_structurelcsh:TA1-2040cytotoxicitylcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringStem celllcsh:Engineering (General). Civil engineering (General)0210 nano-technologylcsh:TK1-9971

description

This study aimed to analyze the biological effects of three new bioactive materials on cell survival, migration, morphology, and attachment in vitro. ACTIVA Kids BioACTIVE Restorative (Pulpdent, Watertown, MA, USA) (Activa), Ionolux (Voco, Cuxhaven, Germany), and Riva Light Cure UV (SDI, Bayswater, Australia) (Riva) were handled and conditioned with a serum-free culture medium. Stem cells from human dental pulp (hDPSCs) were exposed to material extracts, and metabolic activity, cell migration, and cell morphology were evaluated. Cell adhesion to the different materials was analyzed by scanning electron microscopy (SEM). The chemical composition of the materials was evaluated by energy-dispersive X-ray (EDX). One-way analysis of variance followed by a Tukey test was performed (p &lt

https://doi.org/10.3390/ma12223694