0000000000283327

AUTHOR

Claus Cornett

0000-0001-6991-5362

Observation of the Early Structural Changes Leading to the Formation of Protein Superstructures.

Formation of superstructures in protein aggregation processes has been indicated as a general pathway for several proteins, possibly playing a role in human pathologies. There is a severe lack of knowledge on the origin of such species in terms of both mechanisms of formation and structural features. We use equine lysozyme as a model protein, and by combining spectroscopic techniques and microscopy with X-ray fiber diffraction and ab initio modeling of Small Angle X-ray Scattering data, we isolate the partially unfolded state from which one of these superstructures (i.e., particulate) originates. We reveal the low-resolution structure of the unfolded state and its mechanism of formation, hi…

research product

Thioflavin T Hydroxylation at Basic pH and Its Effect on Amyloid Fibril Detection

The fluorescent dye thioflavin T (ThT) is commonly used for in situ amyloid fibril detection. In this work, we focused on the spectroscopic properties and chemical stability of ThT in aqueous solution as a function of pH, temperature, and dye concentration. A reversible hydroxylation process occurs in alkaline solutions, which was characterized using a combination of UV-vis absorption spectroscopy, proton NMR, and density functional theory (DFT). On the basis of these studies, we propose a chemical structure for the hydroxylated form. Finally, by means of fluorescence spectroscopy, ThT hydroxylation effects on in situ amyloid detection have been investigated, providing new insights on the e…

research product