Observation of the Early Structural Changes Leading to the Formation of Protein Superstructures.
Formation of superstructures in protein aggregation processes has been indicated as a general pathway for several proteins, possibly playing a role in human pathologies. There is a severe lack of knowledge on the origin of such species in terms of both mechanisms of formation and structural features. We use equine lysozyme as a model protein, and by combining spectroscopic techniques and microscopy with X-ray fiber diffraction and ab initio modeling of Small Angle X-ray Scattering data, we isolate the partially unfolded state from which one of these superstructures (i.e., particulate) originates. We reveal the low-resolution structure of the unfolded state and its mechanism of formation, hi…
Thioflavin T Hydroxylation at Basic pH and Its Effect on Amyloid Fibril Detection
The fluorescent dye thioflavin T (ThT) is commonly used for in situ amyloid fibril detection. In this work, we focused on the spectroscopic properties and chemical stability of ThT in aqueous solution as a function of pH, temperature, and dye concentration. A reversible hydroxylation process occurs in alkaline solutions, which was characterized using a combination of UV-vis absorption spectroscopy, proton NMR, and density functional theory (DFT). On the basis of these studies, we propose a chemical structure for the hydroxylated form. Finally, by means of fluorescence spectroscopy, ThT hydroxylation effects on in situ amyloid detection have been investigated, providing new insights on the e…