0000000000285775

AUTHOR

Giulia Paci

0000-0003-0565-4356

showing 5 related works from this author

Fluorogenic Tetrazine-Siliconrhodamine Probe for the Labeling of Noncanonical Amino Acid Tagged Proteins

2018

Tetrazine-bearing fluorescent labels enable site-specific tagging of proteins that are genetically manipulated with dienophile modified noncanonical amino acids. The inverse electron demand Diels-Alder reaction between the tetrazine and the dienophile fulfills the criteria of bioorthogonality allowing fluorescent labeling schemes of live cells. Here, we describe the detailed synthetic and labeling protocols of a near infrared emitting siliconrhodamine-tetrazine probe suitable for super-resolution imaging of residue-specifically engineered proteins in mammalian cells.

0301 basic medicinechemistry.chemical_classificationSuper-resolution microscopy010402 general chemistry01 natural sciencesFluorescence0104 chemical sciencesAmino acid03 medical and health sciencesTetrazinechemistry.chemical_compoundFluorescent labelling030104 developmental biologychemistryBiophysics
researchProduct

Author response: Molecular determinants of large cargo transport into the nucleus

2020

Physicsmedicine.anatomical_structuremedicineBiophysicsNucleus
researchProduct

The liquid state of FG-nucleoporins mimics permeability barrier properties of nuclear pore complexes

2019

Nuclear pore complexes form a permeability barrier in vivo that regulates nucleocytoplasmic transport. Here, the authors present a microfluidic device that couples rapid liquid–liquid phase separation of nucleoporins with direct optical interrogation. Freshly formed liquid nucleoporin droplets mimic permeability barrier properties of NPCs.

MicrofluidicsActive Transport Cell Nucleus48BiologyPermeability2303 medical and health sciences0302 clinical medicineReportmedicineMoleculeNuclear poreResearch Articles030304 developmental biology0303 health sciences36Cell Biology34Nuclear Pore Complex ProteinsCell nucleusmedicine.anatomical_structurePermeability (electromagnetism)Nucleocytoplasmic TransportBiophysicsNuclear PoreNucleoporinNuclear transport030217 neurology & neurosurgeryThe Journal of Cell Biology
researchProduct

Molecular determinants of large cargo transport into the nucleus

2020

Nucleocytoplasmic transport is tightly regulated by the nuclear pore complex (NPC). Among the thousands of molecules that cross the NPC, even very large (>15 nm) cargoes such as pathogens, mRNAs and pre-ribosomes can pass the NPC intact. For these cargoes, there is little quantitative understanding of the requirements for their nuclear import, especially the role of multivalent binding to transport receptors via nuclear localisation sequences (NLSs) and the effect of size on import efficiency. Here, we assayed nuclear import kinetics of 30 large cargo models based on four capsid-like particles in the size range of 17–36 nm, with tuneable numbers of up to 240 NLSs. We show that the requireme…

QH301-705.5ScienceStructural Biology and Molecular Biophysicspermeabilized cellsimport kineticsNuclear Localization SignalsBiophysicslarge cargoActive Transport Cell NucleusNLSnuclear transportGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciences0302 clinical medicinemedicinecapsidNLSHumansNuclear poreBiology (General)030304 developmental biologyCell Nucleus0303 health sciencesGeneral Immunology and MicrobiologyChemistryGeneral NeuroscienceMolecular biophysicsQRE. coliGeneral MedicineCell Biologymedicine.anatomical_structureStructural biologyNucleocytoplasmic TransportBiophysicsNuclear PoreMedicineNuclear transportCarrier ProteinsFlux (metabolism)Nucleus030217 neurology & neurosurgeryResearch ArticleHumaneLife
researchProduct

Cargo transport through the nuclear pore complex at a glance.

2021

ABSTRACT Bidirectional transport of macromolecules across the nuclear envelope is a hallmark of eukaryotic cells, in which the genetic material is compartmentalized inside the nucleus. The nuclear pore complex (NPC) is the major gateway to the nucleus and it regulates nucleocytoplasmic transport, which is key to processes including transcriptional regulation and cell cycle control. Accordingly, components of the nuclear transport machinery are often found to be dysregulated or hijacked in diseases. In this Cell Science at a Glance article and accompanying poster, we provide an overview of our current understanding of cargo transport through the NPC, from the basic transport signals and mach…

Cell Nucleus0303 health sciencesBidirectional transportNuclear EnvelopeActive Transport Cell NucleusCell BiologyBiologyCell biologyNuclear Pore Complex Proteins03 medical and health sciences0302 clinical medicinemedicine.anatomical_structureEukaryotic CellsNucleocytoplasmic TransportCell cycle controlmedicineTranscriptional regulationNuclear PoreNuclear transportMultivalent bindingNuclear poreNucleus030217 neurology & neurosurgery030304 developmental biologyJournal of cell science
researchProduct