0000000000286244
AUTHOR
Ronald Holzwarth
Optical frequency combs for space applications
Optical frequency comb-based high resolution laser spectroscopy has been demonstrated in space under micro-gravity on two sounding rocket based experiments. The comb has been used to simultaneously measure two different atomic transitions.
Testing Time Dilation on Fast Ion Beams
We report the status of an experimental test of time dilation in Special Relativity. This is accomplished by simultaneously measuring the forward and backward Doppler shifts of an electronic transition of fast moving ions, using high-precision laser spectroscopy. From these two Doppler shifts both the ion velocity ? = v/c and the time dilation factor can be derived. From measurements based on saturation spectroscopy on lithium ions stored at ? = 0.03 and ? = 0.06 in the TSR heavy-ion storage ring, we achieved an upper limit for a [?2] deviation from Special Relativity of . In recent measurements on a ? = 0.34 Li+ beam in the ESR storage ring we used optical-optical double-resonance spectros…
Test of relativistic time dilation with fast optical atomic clocks at different velocities
Time dilation is one of the most fascinating aspects of special relativity as it abolishes the notion of absolute time. It was first observed experimentally by Ives and Stilwell in 1938 using the Doppler effect. Here we report on a method, based on fast optical atomic clocks with large, but different Lorentz boosts, that tests relativistic time dilation with unprecedented precision. The approach combines ion storage and cooling with optical frequency counting using a frequency comb. 7Li+ ions are prepared at 6.4% and 3.0% of the speed of light in a storage ring, and their time is read with an accuracy of 2×10−10 using laser saturation spectroscopy. The comparison of the Doppler shifts yield…
Space-borne frequency comb metrology
Precision time references in space are of major importance to satellite-based fundamental science, global satellite navigation, earth observation, and satellite formation flying. Here we report on the operation of a compact, rugged, and automated optical frequency comb setup on a sounding rocket in space under microgravity. The experiment compared two clocks, one based on the optical D2 transition in Rb, and another on hyperfine splitting in Cs. This represents the first frequency comb based optical clock operation in space, which is an important milestone for future satellite-based precision metrology. Based on the approach demonstrated here, future space-based precision metrology can be i…
Iodine hyperfine structure and absolute frequency measurements at 565, 576, and 585nm
Abstract The hyperfine structure splittings of the P(10)14-1, R(15)14-1, and R(99)15-1 transitions at 585 nm, P(62)17-1 at 576 nm, and P(80)21-1 at 565 nm in 127 I 2 are measured by heterodyne spectroscopy using two dye lasers. In addition, the absolute frequencies of the hyperfine components P(10)14-1 a 15 and P(80)21-1 a 10 are determined using a self-referenced frequency comb. These frequencies are used in an experiment testing relativistic time dilation by laser spectroscopy on a fast ion beam.