0000000000289780
AUTHOR
Woonhyuk Baek
[Cu32(PET)24H8Cl2](PPh4)2: A Copper Hydride Nanocluster with a Bisquare Antiprismatic Core
Atomically precise coinage metal (Au, Ag and Cu) nanoclusters (NCs) have been the subject of immense interest for their intriguing structural, photophysical and catalytic properties. However, the synthesis of Cu NCs is highly challenging because of low reduction potential and high reactivity of copper, demonstrating the need for new synthetic methods using appropriate ligand combinations. By designing a diamine-assisted synthetic strategy, here we report the synthesis and total structure characterization of a box-like dianionic Cu NC, [Cu32(PET)24H8Cl2](PPh4)2 co-protected by 2-phenylethanethiolate (PET), hydride and chloride ligands. Its crystal structure comprises a rare bisquare antipris…
Ag44(EBT)26(TPP)4Nanoclusters With Tailored Molecular and Electronic Structure
Although atomically precise metalloid nanoclusters (NCs) of identical size with distinctly different molecular structures are highly desirable to understand the structural effects on the optical and photophysical properties, their synthesis remains highly challenging. Herein, we employed phosphine and thiol capping ligands featuring appropriate steric effects and synthesized a charge-neutral Ag NC with the formula Ag44 (EBT)26 (TPP)4 (EBT: 2-ethylbenzenethiolate; TPP: triphenylphosphine). The single-crystal X-ray structure reveals that this NC has a hollow metal core of Ag12 @Ag20 and a metal-ligand shell of Ag12 (EBT)26 (TPP)4 . The presence of mixed ligands and long V-shaped metal-ligand …
Cd12Ag32(SePh)36 : Non-Noble Metal Doped Silver Nanoclusters
While there are numerous recent reports on doping of a ligand-protected noble metal nanocluster (e.g., Au and Ag) with another noble metal, non-noble metal (e.g., Cd) doping remains challenging. Here, we design a phosphine-assisted synthetic strategy and synthesize a Cd doped Ag nanocluster, Cd12Ag32(SePh)36 (SePh: selenophenolate), which exhibits characteristic UV–vis absorption features and rare near-infrared (NIR) photoluminescence at ∼1020 nm. The X-ray single crystal structure reveals an asymmetric two-shell Ag4@Ag24 metal kernel protected by four nonplanar Cd3Ag(SePh)9 metal–ligand frameworks. Furthermore, the electronic structure analysis shows that the cluster is a 20-electron “supe…
Ag44(EBT)26(TPP)4 Nanoclusters with Tailored Molecular and Electronic Structure
Although atomically precise metalloid nanoclusters (NCs) of identical size with distinctly different molecular structures are highly desirable to understand the structural effects on the intriguing optical and photophysical properties, their synthesis remains highly challenging. Herein, we employed phosphine and thiol capping ligands featuring appropriate steric effects and synthesized a charge‐neutral Ag NC with the formula, Ag 44 (EBT) 26 (TPP) 4 (EBT: 2‐ethylbenzenethiolate; TPP: triphenylphosphine). The single‐crystal X‐ray structure reveals that this NC has a hollow metal core of Ag 12 @Ag 20 and a metal‐ligand shell of Ag 12 (EBT) 26 (TPP) 4 . The presence of mixed ligands and long V‐…
Cd12Ag32(SePh)36: Non-Noble Metal Doped Silver Nanoclusters
While there are numerous recent reports on doping of a ligand-protected noble metal nanocluster (e.g., Au and Ag) with another noble metal, non-noble metal (e.g., Cd) doping remains challenging. Here, we design a phosphine-assisted synthetic strategy and synthesize a Cd doped Ag nanocluster, Cd12Ag32(SePh)36 (SePh: selenophenolate), which exhibits characteristic UV–vis absorption features and rare near-infrared (NIR) photoluminescence at ∼1020 nm. The X-ray single crystal structure reveals an asymmetric two-shell Ag4@Ag24 metal kernel protected by four nonplanar Cd3Ag(SePh)9 metal–ligand frameworks. Furthermore, the electronic structure analysis shows that the cluster is a 20-electron “supe…
[Cu32(PET)24H8Cl2](PPh4)2: A Copper Hydride Nanocluster with a Bisquare Antiprismatic Core
Atomically precise coinage metal (Au, Ag, and Cu) nanoclusters (NCs) have been the subject of immense interest for their intriguing structural, photophysical, and catalytic properties. However, the synthesis of Cu NCs is highly challenging because of low reduction potential and high reactivity of copper, demonstrating the need for new synthetic methods using appropriate ligand combinations. By designing a diamine-assisted synthetic strategy, here we report the synthesis and total structure characterization of a box-like dianionic Cu NC [Cu32(PET)24H8Cl2](PPh4)2 coprotected by 2-phenylethanethiolate (PET), hydride, and chloride ligands. Its crystal structure comprises a rare bisquare antipri…
CCDC 1918141: Experimental Crystal Structure Determination
Related Article: Megalamane S. Bootharaju, Hogeun Chang, Guocheng Deng, Sami Malola, Woonhyuk Baek, Hannu Häkkinen, Nanfeng Zheng, Taeghwan Hyeon|2019|J.Am.Chem.Soc.|141|8422|doi:10.1021/jacs.9b03257
CCDC 2021376: Experimental Crystal Structure Determination
Related Article: Sanghwa Lee, Megalamane S. Bootharaju, Guocheng Deng, Sami Malola, Woonhyuk Baek, Hannu Häkkinen, Nanfeng Zheng, Taeghwan Hyeon|2020|J.Am.Chem.Soc.|142|13974|doi:10.1021/jacs.0c06577
CCDC 2032634: Experimental Crystal Structure Determination
Related Article: Megalamane S. Bootharaju, Sanghwa Lee, Guocheng Deng, Sami Malola, Woonhyuk Baek, Hannu H��kkinen, Nanfeng Zheng, Taeghwan Hyeon|2021|Angew.Chem.,Int.Ed.|60|9038|doi:10.1002/anie.202015907