0000000000291810

AUTHOR

Renaud A. L. Vallée

What can be learned from the rotational motion of single molecules in a polymer melt near the glass transition?

We develop a framework for the interpretation of single-molecule (SM) spectroscopy experiments of probe dynamics in a complex glass-forming system. Specifically, from molecular dynamics simulations of a single probe molecule in a coarse-grained model of a polymer melt, we show the emergence of sudden large angular reorientations (SLARs) of the SM as the mode coupling critical temperature is closely approached. The large angular jumps are intimately related to meta-basin transitions in the potential energy landscape of the investigated system and cause the appearance of stretched exponential relaxations of various rotational observables, reported in the SM literature as dynamic heterogeneity…

research product

Single Molecules Probing the Freezing of Polymer Melts: A Molecular Dynamics Study for Various Molecule-Chain Linkages

8 pages; International audience; We present molecular dynamics simulations of coarse-grained model systems of a glassforming polymer matrix containing fluorescent probe molecules. These probe molecules are either dispersed in the matrix or covalently attached to the center or the end of a dilute fraction of the polymer chains. We show that in all cases the translational and rotational relaxation of the probe molecules is a faithful sensor for the glass transition of the matrix as determined from a mode-coupling analysis or Vogel-Fulcher analysis of their R-relaxation behavior. Matrix and dumbbell related relaxation processes show a clear violation of the Stokes-Einstein-Debye laws. In accor…

research product

Single molecule probing of dynamics in supercooled polymers

6 pages; International audience; Fluorescence experiments with single BODIPY molecules embedded in a poly(methyl acrylate) matrix have been performed at various temperatures in the supercooled regime. By using pulsed excitation, fluorescence lifetime and linear dichroism time trajectories were accessible at the same time. Both observables have been analyzed without data binning. While the linear dichroism solely reflects single particle dynamics, the fluorescence lifetime observable depends on the molecular environment, so that the dynamics from the polymer host surrounding a chromophore contributes to this quantity. We observe that the lifetime correlation decays slightly faster than polar…

research product

Fluorescence Lifetime of a Single Molecule as an Observable of Meta-Basin Dynamics in Fluids Near the Glass Transition

Using single molecule spectroscopy, we show that the fluorescence lifetime trajectories of single probe molecules embedded in a glass-forming polymer melt exhibit strong fluctuations of a hopping character. Using molecular dynamics simulations targeted to explain these experimental observations, we show that the lifetime fluctuations correlate strongly with the average square displacement function of the matrix particles. The latter observable is a direct probe of the meta-basin transitions in the potential energy landscape of glass-forming liquids. We thus show here that single molecule experiments can provide detailed microscopic information on system properties that hitherto have been ac…

research product