0000000000292447

AUTHOR

Dennis H. Bamford

0000-0002-6438-8118

showing 7 related works from this author

Purified Membrane-Containing Procapsids of Bacteriophage PRD1 Package the Viral Genome

2009

Icosahedral-tailed double-stranded DNA (dsDNA) bacteriophages and herpesviruses translocate viral DNA into a preformed procapsid in an ATP-driven reaction by a packaging complex that operates at a portal vertex. A similar packaging system operates in the tailless dsDNA phage PRD1 (Tectiviridae family), except that there is an internal membrane vesicle in the procapsid. The unit-length linear dsDNA genome with covalently linked 5'-terminal proteins enters the procapsid through a unique vertex. Two small integral membrane proteins, P20 and P22, provide a conduit for DNA translocation. The packaging machinery also contains the packaging ATPase P9 and the packaging efficiency factor P6. Here we…

Viral Plaque AssayvirusesATPaseViral Plaque AssayGenomeViral Proteins03 medical and health scienceschemistry.chemical_compoundCapsidBacteriophage PRD1Structural BiologyBacteriophage PRD1Molecular BiologyIntegral membrane protein030304 developmental biology0303 health sciencesMicrobial Viabilitybiology030306 microbiologyVirus AssemblyCell MembraneMembrane ProteinsMolecular biologyMembranechemistryDNA Viralbiology.proteinBiophysicsTectiviridaeDNAJournal of Molecular Biology
researchProduct

Selenomethionine labeling of large biological macromolecular complexes: probing the structure of marine bacterial virus PM2.

2008

There is a need for improved tools for labeling protein species within large macromolecular assemblies. Here we describe a method for the efficient selenomethionine labeling of the membrane-containing bacterial virus PM2 for structural studies. By examining potential host cells a strain was found which was auxotrophic for methionine, and by performing a multiparameter search of conditions it was possible to derive a robust protocol which simultaneously minimized the toxic effects of the selenomethionine, so that a reasonable virus yield was maintained, whilst still achieving essentially complete labeling. This has allowed us to fingerprint the protein constituents of the virus in a relative…

0303 health sciencesbiologyStrain (chemistry)030306 microbiologyAuxotrophyCorticoviridaechemistry.chemical_elementCrystallography X-Raybiology.organism_classificationVirusBacteriophage03 medical and health scienceschemistryBiochemistryStructural BiologyYield (chemistry)MethodsBacterial virusSelenomethionineSelenium030304 developmental biologyMacromoleculeJournal of structural biology
researchProduct

Efficient DNA Packaging of Bacteriophage PRD1 Requires the Unique Vertex Protein P6

2007

ABSTRACT The assembly of bacteriophage PRD1 proceeds via formation of empty procapsids containing an internal lipid membrane, into which the linear double-stranded DNA genome is subsequently packaged. The packaging ATPase P9 and other putative packaging proteins have been shown to be located at a unique vertex of the PRD1 capsid. Here, we describe the isolation and characterization of a suppressor-sensitive PRD1 mutant deficient in the unique vertex protein P6. Protein P6 was found to be an essential part of the PRD1 packaging machinery; its absence leads to greatly reduced packaging efficiency. Lack of P6 was not found to affect particle assembly, because in the P6-deficient mutant infecti…

Specificity factorImmunologyMutantBiologymedicine.disease_causeMicrobiologyBacteriophageViral Proteins03 medical and health scienceschemistry.chemical_compoundVirologyDNA PackagingmedicineBacteriophage PRD1Lipid bilayer030304 developmental biology0303 health sciencesMutationStructure and AssemblyVirus Assembly030302 biochemistry & molecular biologyVirionTectivirusSalmonella entericabiology.organism_classificationMolecular biologychemistryCapsidInsect ScienceMutationBiophysicsDNAJournal of Virology
researchProduct

The use of low-resolution phasing followed by phase extension from 7.6 to 2.5 Å resolution with noncrystallographic symmetry to solve the structure o…

2011

P2, the major capsid protein of bacteriophage PM2, adopts the double β-barrel fold characteristic of the PRD1-adenoviral lineage. The 2.5 Å resolution X-ray data obtained by analysis of the two major lattices of a multiple crystal of P2 were phased by molecular replacement, using as a search model structure factors to 7.6 Å resolution obtained from electron density cut from the map of the entire PM2 virion. Phase extension to 2.5 Å resolution used solely sixfold cycling averaging and solvent flattening. This represents an atypical example of an oligomeric protein for which the structure has been determined at high resolution by bootstrapping from low-resolution initial phases.

Models Molecular0303 health sciencesElectron densitybiologyLow resolution030303 biophysicsGeneral MedicineCrystallography X-Raybiology.organism_classificationBacteriophage PM2PhaserFlatteningProtein Structure TertiaryBacteriophage03 medical and health sciencesCrystallographyCapsidStructural BiologyBacteriophagesCapsid ProteinsMolecular replacementProtein Structure Quaternary030304 developmental biologyActa Crystallographica Section D Biological Crystallography
researchProduct

Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2.

2008

Recent, primarily structural observations indicate that related viruses, harboring no sequence similarity, infect hosts of different domains of life. One such clade of viruses, defined by common capsid architecture and coat protein fold, is the so-called PRD1-adenovirus lineage. Here we report the structure of the marine lipid-containing bacteriophage PM2 determined by crystallographic analyses of the entire approximately 45 MDa virion and of the outer coat proteins P1 and P2, revealing PM2 to be a primeval member of the PRD1-adenovirus lineage with an icosahedral shell and canonical double beta barrel major coat protein. The view of the lipid bilayer, richly decorated with membrane protein…

Models MolecularViral proteinProtein ConformationvirusesMolecular Sequence DataBiologymedicine.disease_causeCrystallography X-Ray03 medical and health sciencesProtein structuremedicineLipid bilayerMolecular Biology030304 developmental biology0303 health sciences030306 microbiologyCorticoviridaeVirionCell BiologyVirologyBiological EvolutionLipidsCell biologyBeta barrelMembrane proteinCapsidViral evolutionMembrane biogenesisVirusesCalciumCapsid ProteinsMolecular cell
researchProduct

The closest relatives of icosahedral viruses of thermophilic bacteria are among viruses and plasmids of the halophilic archaea.

2009

We have sequenced the genome and identified the structural proteins and lipids of the novel membranecontaining, icosahedral virus P23-77 of Thermus thermophilus. P23-77 has an 17-kb circular double-stranded DNA genome, which was annotated to contain 37 putative genes. Virions were subjected to dissociation analysis, and five protein species were shown to associate with the internal viral membrane, while three were constituents of the protein capsid. Analysis of the bacteriophage genome revealed it to be evolutionarily related to another Thermus phage (IN93), archaeal Halobacterium plasmid (pHH205), a genetic element integrated into Haloarcula genome (designated here as IHP for integrated Ha…

virusesImmunologyMicrobiologyGenomeVirusBacteriophage03 medical and health sciencesBacterial ProteinsVirologyGeneVirus classificationPhylogeny030304 developmental biologyGeneticsAdenosine Triphosphatases0303 health sciencesbiologyBase Sequence030306 microbiologyThermus thermophilusMembrane ProteinsViral membraneProvirusbiology.organism_classificationLipidsGenetic Diversity and EvolutionVirion assemblyGenes BacterialInsect ScienceCapsid ProteinsGenome BacterialJournal of virology
researchProduct

Regulation of kynurenine biosynthesis during influenza virus infection.

2017

Influenza A viruses (IAVs) remain serious threats to public health because of the shortage of effective means of control. Developing more effective virus control modalities requires better understanding of virus–host interactions. It has previously been shown that IAV induces the production of kynurenine, which suppresses T-cell responses, enhances pain hypersensitivity and disturbs behaviour in infected animals. However, the regulation of kynurenine biosynthesis during IAV infection remains elusive. Here we showed that IAV infection induced expression of interferons (IFNs), which upregulated production of indoleamine-2,3-dioxygenase (IDO1), which catalysed the kynurenine biosynthesis. Furt…

0301 basic medicineIndoleshost-pathogen interactionViral Nonstructural Proteinsmedicine.disease_causeVirus ReplicationBiochemistryinfluenza viruschemistry.chemical_compoundMiceInfluenza A Virus H1N1 SubtypeInterferonOximesinnate immunityLungOxazolesKynurenineRegulation of gene expressionMice Inbred BALB CSulfonamidesTryptophaninterferon3. Good healthHost-Pathogen InteractionsFemaleMetabolic Networks and Pathwaysmedicine.drugHost–pathogen interaction030106 microbiologyPrimary Cell CultureBiologyta3111Antiviral AgentsVirus03 medical and health sciences3-dioxygenase (IDO1)Orthomyxoviridae InfectionsmedicineAnimalsHumansImmunologic FactorsIndoleamine-Pyrrole 23-DioxygenasePyrrolesMolecular BiologyInnate immune systemta1184Macrophagesta1183ta1182Cell BiologyVirologyindoleamine-pyrrole 2Thiazoles030104 developmental biologyHerpes simplex virusViral replicationchemistryGene Expression RegulationInterferonsTranscriptomeKynurenineThe FEBS journal
researchProduct