0000000000292447

AUTHOR

Dennis H. Bamford

0000-0002-6438-8118

Purified Membrane-Containing Procapsids of Bacteriophage PRD1 Package the Viral Genome

Icosahedral-tailed double-stranded DNA (dsDNA) bacteriophages and herpesviruses translocate viral DNA into a preformed procapsid in an ATP-driven reaction by a packaging complex that operates at a portal vertex. A similar packaging system operates in the tailless dsDNA phage PRD1 (Tectiviridae family), except that there is an internal membrane vesicle in the procapsid. The unit-length linear dsDNA genome with covalently linked 5'-terminal proteins enters the procapsid through a unique vertex. Two small integral membrane proteins, P20 and P22, provide a conduit for DNA translocation. The packaging machinery also contains the packaging ATPase P9 and the packaging efficiency factor P6. Here we…

research product

Selenomethionine labeling of large biological macromolecular complexes: probing the structure of marine bacterial virus PM2.

There is a need for improved tools for labeling protein species within large macromolecular assemblies. Here we describe a method for the efficient selenomethionine labeling of the membrane-containing bacterial virus PM2 for structural studies. By examining potential host cells a strain was found which was auxotrophic for methionine, and by performing a multiparameter search of conditions it was possible to derive a robust protocol which simultaneously minimized the toxic effects of the selenomethionine, so that a reasonable virus yield was maintained, whilst still achieving essentially complete labeling. This has allowed us to fingerprint the protein constituents of the virus in a relative…

research product

Efficient DNA Packaging of Bacteriophage PRD1 Requires the Unique Vertex Protein P6

ABSTRACT The assembly of bacteriophage PRD1 proceeds via formation of empty procapsids containing an internal lipid membrane, into which the linear double-stranded DNA genome is subsequently packaged. The packaging ATPase P9 and other putative packaging proteins have been shown to be located at a unique vertex of the PRD1 capsid. Here, we describe the isolation and characterization of a suppressor-sensitive PRD1 mutant deficient in the unique vertex protein P6. Protein P6 was found to be an essential part of the PRD1 packaging machinery; its absence leads to greatly reduced packaging efficiency. Lack of P6 was not found to affect particle assembly, because in the P6-deficient mutant infecti…

research product

The use of low-resolution phasing followed by phase extension from 7.6 to 2.5 Å resolution with noncrystallographic symmetry to solve the structure of a bacteriophage capsid protein

P2, the major capsid protein of bacteriophage PM2, adopts the double β-barrel fold characteristic of the PRD1-adenoviral lineage. The 2.5 Å resolution X-ray data obtained by analysis of the two major lattices of a multiple crystal of P2 were phased by molecular replacement, using as a search model structure factors to 7.6 Å resolution obtained from electron density cut from the map of the entire PM2 virion. Phase extension to 2.5 Å resolution used solely sixfold cycling averaging and solvent flattening. This represents an atypical example of an oligomeric protein for which the structure has been determined at high resolution by bootstrapping from low-resolution initial phases.

research product

Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2.

Recent, primarily structural observations indicate that related viruses, harboring no sequence similarity, infect hosts of different domains of life. One such clade of viruses, defined by common capsid architecture and coat protein fold, is the so-called PRD1-adenovirus lineage. Here we report the structure of the marine lipid-containing bacteriophage PM2 determined by crystallographic analyses of the entire approximately 45 MDa virion and of the outer coat proteins P1 and P2, revealing PM2 to be a primeval member of the PRD1-adenovirus lineage with an icosahedral shell and canonical double beta barrel major coat protein. The view of the lipid bilayer, richly decorated with membrane protein…

research product

The closest relatives of icosahedral viruses of thermophilic bacteria are among viruses and plasmids of the halophilic archaea.

We have sequenced the genome and identified the structural proteins and lipids of the novel membranecontaining, icosahedral virus P23-77 of Thermus thermophilus. P23-77 has an 17-kb circular double-stranded DNA genome, which was annotated to contain 37 putative genes. Virions were subjected to dissociation analysis, and five protein species were shown to associate with the internal viral membrane, while three were constituents of the protein capsid. Analysis of the bacteriophage genome revealed it to be evolutionarily related to another Thermus phage (IN93), archaeal Halobacterium plasmid (pHH205), a genetic element integrated into Haloarcula genome (designated here as IHP for integrated Ha…

research product

Regulation of kynurenine biosynthesis during influenza virus infection.

Influenza A viruses (IAVs) remain serious threats to public health because of the shortage of effective means of control. Developing more effective virus control modalities requires better understanding of virus–host interactions. It has previously been shown that IAV induces the production of kynurenine, which suppresses T-cell responses, enhances pain hypersensitivity and disturbs behaviour in infected animals. However, the regulation of kynurenine biosynthesis during IAV infection remains elusive. Here we showed that IAV infection induced expression of interferons (IFNs), which upregulated production of indoleamine-2,3-dioxygenase (IDO1), which catalysed the kynurenine biosynthesis. Furt…

research product