0000000000292541

AUTHOR

Maria J. Ruperez-moreno

showing 2 related works from this author

A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time

2017

[EN] This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely…

AdultFinite element methodsMean squared errorComputer scienceQuantitative Biology::Tissues and OrgansINGENIERIA MECANICAFinite Element AnalysisPhysics::Medical PhysicsDecision treeBreast compressionHealth Informatics02 engineering and technologyMachine learningcomputer.software_genreModels Biological030218 nuclear medicine & medical imagingSet (abstract data type)03 medical and health sciencesImaging Three-Dimensional0302 clinical medicineMachine learning0202 electrical engineering electronic engineering information engineeringHumansBreastbusiness.industryModelingEnsemble learningFinite element methodComputer Science ApplicationsRandom forestEuclidean distanceTree (data structure)Female020201 artificial intelligence & image processingArtificial intelligenceBreast biomechanicsbusinesscomputerLENGUAJES Y SISTEMAS INFORMATICOS
researchProduct

Machine Learning for Modeling the Biomechanical Behavior of Human Soft Tissue

2016

An accurate modeling of the biomechanical properties of human soft tissue is crucial in many clinical applications, such as, radiotherapy administration or surgery. The finite element method (FEM) is the usual choice to carry out such modeling due to its high accuracy. However, FEM is computationally very costly, and hence, its application in real-time or even off-line with short delays are still challenges to overcome. This paper proposes a framework based on Machine Learning to learn FEM modeling, thus having a tool able to yield results that may be sufficiently fast for clinical applications. In particular, the use of ensembles of Decision Trees has shown its suitability in modeling the …

Computer sciencebusiness.industrymedicine.medical_treatmentDecision treeSoft tissue02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesFinite element methodData modeling010101 applied mathematicsRadiation therapy0202 electrical engineering electronic engineering information engineeringmedicine020201 artificial intelligence & image processingArtificial intelligence0101 mathematicsbusinesscomputer2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)
researchProduct