0000000000293347

AUTHOR

Christoph Scherer

0000-0003-2587-4567

Ultra-coarse-graining of homopolymers in inhomogeneous systems

Abstract We develop coarse-grained (CG) models for simulating homopolymers in inhomogeneous systems, focusing on polymer films and droplets. If the CG polymers interact solely through two-body potentials, then the films and droplets either dissolve or collapse into small aggregates, depending on whether the effective polymer–polymer interactions have been determined from reference simulations in the bulk or at infinite dilution. To address this shortcoming, we include higher order interactions either through an additional three-body potential or a local density-dependent potential (LDP). We parameterize the two- and three-body potentials via force matching, and the LDP through relative entr…

research product

Negative thermal expansion of quartz glass at low temperatures: An ab initio simulation study

Abstract Using a mixed classical Molecular dynamics (MD)/ab initio simulation scheme combined with a quasi-harmonic approximation, we calculate the linear thermal expansion coefficient αL(T) in vitreous silica glasses. The systems are first cooled down by classical MD simulations. Then they are structurally relaxed by ab initio DFT calculations. The vibrational properties are calculated employing the frozen phonon method, and these results are finally used to calculate the Helmholtz free energy as a function of volume. In agreement with experiments, our simulations predict that αL(T) is negative at low temperatures up to T ≈ 150 K. In this low-temperature regime, the simulation results are …

research product

Structure and dynamics of B2O3 melts and glasses: From ab initio to classical molecular dynamics simulations

Abstract Boron oxide (B2O3) is investigated by a combination of ab initio (DFT-based) molecular dynamics (MD) simulations and classical MD simulations. From the trajectories of the ab initio MD simulation, we derive a three-body interaction potential which is used in classical MD simulations to study various structural and dynamic properties on larger time and length scales than possible in the ab initio simulations. Differences and similarities to the structure and dynamics of other network glass formers such as SiO2 and GeO2 are discussed. Moreover, various properties as obtained from the simulations are compared to those from experiments of B2O3.

research product