6533b7d7fe1ef96bd1267a8f
RESEARCH PRODUCT
Ultra-coarse-graining of homopolymers in inhomogeneous systems
Christoph SchererFabian BerressemArash NikoubashmanDenis Andrienkosubject
chemistry.chemical_classificationMaterials science02 engineering and technologyPolymer021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurface tensionForce matchingchemistryChemical physics0103 physical sciencesGeneral Materials ScienceGranularityDeformation (engineering)Thin film010306 general physics0210 nano-technologydescription
Abstract We develop coarse-grained (CG) models for simulating homopolymers in inhomogeneous systems, focusing on polymer films and droplets. If the CG polymers interact solely through two-body potentials, then the films and droplets either dissolve or collapse into small aggregates, depending on whether the effective polymer–polymer interactions have been determined from reference simulations in the bulk or at infinite dilution. To address this shortcoming, we include higher order interactions either through an additional three-body potential or a local density-dependent potential (LDP). We parameterize the two- and three-body potentials via force matching, and the LDP through relative entropy minimization. While the CG models with three-body interactions fail at reproducing stable polymer films and droplets, CG simulations with an LDP are able to do so. Minor quantitative differences between the reference and the CG simulations, namely a slight broadening of interfaces accompanied by a smaller surface tension in the CG simulations, can be attributed to the deformation of polymers near the interfaces, which cannot be resolved in the CG representation, where the polymers are mapped to spherical beads.
year | journal | country | edition | language |
---|---|---|---|---|
2021-05-19 | Journal of Physics: Condensed Matter |