0000000000293872

AUTHOR

Juan P. Martínez Pastor

showing 5 related works from this author

Outstanding nonlinear optical properties of methylammonium- and Cs-PbX3 (X = Br, I, and Br–I) perovskites: Polycrystalline thin films and nanoparticl…

2019

Metal Halide Perovskites (MHPs) have arisen as promising materials to construct cost-effective photovoltaic and light emission devices. The study of nonlinear optical properties of MHPs is necessary to get similar success in nonlinear photonic devices, which is practically absent in the literature. The determination of the third order nonlinear coefficients is typically done by the Z-scan technique, which is limited by the scattering of polycrystalline thin films. In this work, we have studied nonlinear optical properties of polycrystalline CH3NH3PbX3 (MAPbX3) thin films and colloidal CsPbX3 nanoparticles with three different bandgaps (X3 = I3, Br3, and Br1.5I1.5). Their bright generation o…

010302 applied physicsMaterials sciencePhotoluminescenceInfraredbusiness.industryScatteringBand gaplcsh:BiotechnologyGeneral Engineering02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences7. Clean energylcsh:QC1-999lcsh:TP248.13-248.650103 physical sciencesOptoelectronicsGeneral Materials ScienceLight emissionPhotonicsThin film0210 nano-technologybusinessAbsorption (electromagnetic radiation)lcsh:PhysicsAPL Materials
researchProduct

Enhanced nanoscopy of individual CsPbBr3 perovskite nanocrystals using dielectric sub-micrometric antennas

2020

We demonstrate an efficient, simple, and low-cost approach for enhanced nanoscopy in individual green emitting perovskite (CsPbBr3) nanocrystals via TiO2 dielectric nanoantenna. The observed three- to five-fold emission enhancement is attributed to near-field effects and emission steering promoted by the coupling between the perovskite nanocrystals and the dielectric sub-micrometric antennas. The dark-field scattering configuration is then exploited for surface-enhanced absorption measurements, showing a large increase in detection sensitivity, leading to the detection of individual nanocrystals. Due to the broadband spectral response of the Mie sub-micrometric antennas, the method can be e…

Detection sensitivityMaterials sciencelcsh:BiotechnologyCesium compoundsPhysics::Optics02 engineering and technologyDielectricPerovskiteLead compoundsperovskite solar cells01 natural sciences7. Clean energyCondensed Matter::Materials Sciencenanocrystalslcsh:TP248.13-248.650103 physical sciencesEnhanced absorptionSemiconductor quantum dotsElectronic transitionGeneral Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsAbsorption (electromagnetic radiation)perovskitePerovskite (structure)010302 applied physicsScatteringbusiness.industryGeneral Engineering021001 nanoscience & nanotechnologylcsh:QC1-999NanocrystalsNear field effectNanocrystalAtomic electron transitionQuantum dotOptoelectronicsTitanium dioxideAntennasDark-field scatteringsLow cost approachPhotonics0210 nano-technologybusinessOrganic moleculeslcsh:PhysicsBromine compoundsEmission enhancement
researchProduct

One-step formation of nanostructures on silicon surfaces using pure hydrogen-radical-initiated reactions

2013

One-step formation of silicon nanowires, sheets, and texture surface on a silicon substrate has been achieved using hydrogen-radical etching reactions. Metallic tungsten and for comparison purposes a tungsten hot wire, were used as catalysts for the hydrogen-molecular cracking. It was shown that a variety of surface structures on silicon such as inverted pyramid texture, V-groove texture, dense silicon nanowire growth over texture, and nanosheet structure can be obtained by controlling the process conditions. The obtained results suggested that the formation of nanotungsten silicide particle is an essential prerequisite to obtain these structures. The particles work as an etching mask again…

Materials scienceSiliconNanowireNanocrystalline siliconchemistry.chemical_elementNanotechnologySurfaces and InterfacesSubstrate (electronics)TungstenCondensed Matter Physics7. Clean energySurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistryEtching (microfabrication)SilicideMaterials ChemistryTexture (crystalline)Electrical and Electronic Engineeringphysica status solidi (a)
researchProduct

Scientific and Technical Contributions from Research Projects

2019

The main goal of this project is to demonstrate the advantages of sensor integration on a remotely controlled robotic platform for increasing operator safety and improving the classification of explosive targets. This is accomplished by combining the imaging provided by radars and an optoelectronic sensor, a time-of-flight (ToF) depth camera. An additional aim is to demonstrate the operability and practicality of the system in a field with landmine simulants having plastic cases.

Data processingOperator (computer programming)OperabilityExplosive materialComputer scienceElectronic engineeringElectronic systemsField (computer science)
researchProduct

Spray-driven Solid-State Halide Exchange in CsPbX3 Nanocrystal Films

2019

Materials scienceChemical engineeringNanocrystalSolid-stateHalideProceedings of the International Conference on Perovskite Thin Film Photovoltaics and Perovskite Photonics and Optoelectronics
researchProduct