0000000000297335

AUTHOR

Aleksandr Zaslavski

showing 2 related works from this author

Interface of Silicon Nitride Nanolayers with Oxygen Deficiency

2018

Multilayer Si 3 N 4 consisting of Si 3 N 4 nanolayers with the total thickness 60 nm was deposited layer-by-layer in a low-pressure chemical vapor deposition process. Compared with the single-layer Si 3 N 4 , the multilayer Si 3 N 4 had one-third less oxygen concentration at the interfaces. This decreased density of electrically active centers of oxygen traps and improved quality of nanocapacitors with multilayer Si 3 N 4 dielectric.

Materials scienceSiliconAnalytical chemistrychemistry.chemical_elementChemical vapor depositionDielectricOxygenCapacitancelaw.inventionCapacitorchemistry.chemical_compoundchemistrySilicon nitridelawLimiting oxygen concentration2018 16th Biennial Baltic Electronics Conference (BEC)
researchProduct

Radiation resistance of nanolayered silicon nitride capacitors

2020

Abstract Single-layered and multi-layered 20–60 nm thick silicon nitride (Si3N4) dielectric nanofilms were fabricated using a low-pressure chemical vapour deposition (LPCVD) method. The X-ray photoelectron spectroscopy (XPS) confirmed less oxygen content in the multi-layered nanofilms. The capacitors with Si3N4 multilayer demonstrated a tendency to a higher breakdown voltage compared to the capacitors with Si3N4 single layer. Si3N4 nanofilms and capacitors with Si3N4 dielectric were exposed to 1 kGy dose of gamma photons. Fourier transform infrared (FTIR) spectroscopy analysis showed that no modifications of the chemical bonds of Si3N4 were present after irradiation. Also, gamma irradiation…

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencebusiness.industry02 engineering and technologyDielectricChemical vapor deposition021001 nanoscience & nanotechnology01 natural sciencesCapacitancelaw.inventionchemistry.chemical_compoundCapacitorSilicon nitridechemistrylaw0103 physical sciencesOptoelectronicsBreakdown voltageIrradiation0210 nano-technologybusinessInstrumentationRadiation resistanceNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct