0000000000297335
AUTHOR
Aleksandr Zaslavski
Interface of Silicon Nitride Nanolayers with Oxygen Deficiency
Multilayer Si 3 N 4 consisting of Si 3 N 4 nanolayers with the total thickness 60 nm was deposited layer-by-layer in a low-pressure chemical vapor deposition process. Compared with the single-layer Si 3 N 4 , the multilayer Si 3 N 4 had one-third less oxygen concentration at the interfaces. This decreased density of electrically active centers of oxygen traps and improved quality of nanocapacitors with multilayer Si 3 N 4 dielectric.
Radiation resistance of nanolayered silicon nitride capacitors
Abstract Single-layered and multi-layered 20–60 nm thick silicon nitride (Si3N4) dielectric nanofilms were fabricated using a low-pressure chemical vapour deposition (LPCVD) method. The X-ray photoelectron spectroscopy (XPS) confirmed less oxygen content in the multi-layered nanofilms. The capacitors with Si3N4 multilayer demonstrated a tendency to a higher breakdown voltage compared to the capacitors with Si3N4 single layer. Si3N4 nanofilms and capacitors with Si3N4 dielectric were exposed to 1 kGy dose of gamma photons. Fourier transform infrared (FTIR) spectroscopy analysis showed that no modifications of the chemical bonds of Si3N4 were present after irradiation. Also, gamma irradiation…