0000000000297416
AUTHOR
Heye Zhang
Integration of different cardiac electrophysiological models into a single simulation pipeline
Clinical translation of computational models of the heart has been hampered by the absence of complete and rigorous technical and clinical validation, as well as benchmarking of the developed tools. To address this issue, a dataset containing the cardiac anatomy and fibre orientations from magnetic resonance images (MRI), as well as epicardial transmembrane potentials from optical mapping acquired on ex-vivo porcine hearts, have previously been made available to the community. Image processing techniques were developed to integrate MRI images with electrical information. Different models were tested and compared with the integrated data1, including: i) a new methodology to customize and reg…
OpenCMISS: A multi-physics & multi-scale computational infrastructure for the VPH/Physiome project
The VPH/Physiome Project is developing the model encoding standards CellML (cellml.org) and FieldML (fieldml.org) as well as web-accessible model repositories based on these standards (models.physiome.org). Freely available open source computational modelling software is also being developed to solve the partial differential equations described by the models and to visualise results. The OpenCMISS code (opencmiss.org), described here, has been developed by the authors over the last six years to replace the CMISS code that has supported a number of organ system Physiome projects. OpenCMISS is designed to encompass multiple sets of physical equations and to link subcellular and tissue-level b…
Inter-Model Consistency and Complementarity: Learning from ex-vivo Imaging and Electrophysiological Data towards an Integrated Understanding of Cardiac Physiology
International audience; Computational models of the heart at various scales and levels of complexity have been independently developed, parameterised and validated using a wide range of experimental data for over four decades. However, despite remarkable progress, the lack of coordinated efforts to compare and combine these computational models has limited their impact on the numerous open questions in cardiac physiology. To address this issue, a comprehensive dataset has previously been made available to the community that contains the cardiac anatomy and fibre orientations from magnetic resonance imaging as well as epicardial transmembrane potentials from optical mapping measured on a per…