6533b82efe1ef96bd12933cc

RESEARCH PRODUCT

Inter-Model Consistency and Complementarity: Learning from ex-vivo Imaging and Electrophysiological Data towards an Integrated Understanding of Cardiac Physiology

Gernot PlankJatin RelanPengcheng ShiNicholas AyacheRafael SebastianMihaela PopHervé DelingetteNicolas P. SmithNicolas P. SmithHeye ZhangOscar CamaraPablo LamataPablo LamataAli PashaeiKen C. L. WongMaxime SermesantMaxime SermesantDaniel RomeroLinwei WangHuafeng LiuHuafeng LiuGraham A. WrightAlejandro F. FrangiSteven A. NiedererM. De Craene

subject

Time FactorsComputer scienceSwine[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/ImagingBiophysics030204 cardiovascular system & hematologyIn Vitro Techniquescomputer.software_genreModels BiologicalBiophysical PhenomenaPersonalizationMembrane PotentialsDiffusionPurkinje Fibers03 medical and health sciences0302 clinical medicine[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingOptical mappingMaximum a posteriori estimation[INFO.INFO-IM]Computer Science [cs]/Medical ImagingAnimalsMolecular Biology030304 developmental biology0303 health sciencesComputational modelCardiac electrophysiologybusiness.industryBiophysical PhenomenaExperimental dataReproducibility of ResultsHeartMagnetic Resonance Imaging[INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationElectrophysiological PhenomenaSystems IntegrationSystem integrationArtificial intelligenceData miningbusinesscomputerPericardium[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing

description

International audience; Computational models of the heart at various scales and levels of complexity have been independently developed, parameterised and validated using a wide range of experimental data for over four decades. However, despite remarkable progress, the lack of coordinated efforts to compare and combine these computational models has limited their impact on the numerous open questions in cardiac physiology. To address this issue, a comprehensive dataset has previously been made available to the community that contains the cardiac anatomy and fibre orientations from magnetic resonance imaging as well as epicardial transmembrane potentials from optical mapping measured on a perfused ex-vivo porcine heart. This data was used to develop and customize four models of cardiac electrophysiology with different level of details, including a personalized fast conduction Purkinje system, a maximum a posteriori estimation of the 3D distribution of transmembrane potential, the personalization of a simplified reaction-diffusion model, and a detailed biophysical model with generic conduction parameters. This study proposes the integration of these four models into a single modelling and simulation pipeline, after analyzing their common features and discrepancies. The proposed integrated pipeline demonstrates an increase prediction power of depolarization isochrones in different pacing conditions.

10.1016/j.pbiomolbio.2011.07.007https://inria.hal.science/inria-00616197