0000000000297428

AUTHOR

Pablo Lamata

Integration of different cardiac electrophysiological models into a single simulation pipeline

Clinical translation of computational models of the heart has been hampered by the absence of complete and rigorous technical and clinical validation, as well as benchmarking of the developed tools. To address this issue, a dataset containing the cardiac anatomy and fibre orientations from magnetic resonance images (MRI), as well as epicardial transmembrane potentials from optical mapping acquired on ex-vivo porcine hearts, have previously been made available to the community. Image processing techniques were developed to integrate MRI images with electrical information. Different models were tested and compared with the integrated data1, including: i) a new methodology to customize and reg…

research product

Clinically-Driven Virtual Patient Cohorts Generation: An Application to Aorta

The combination of machine learning methods together with computational modeling and simulation of the cardiovascular system brings the possibility of obtaining very valuable information about new therapies or clinical devices through in-silico experiments. However, the application of machine learning methods demands access to large cohorts of patients. As an alternative to medical data acquisition and processing, which often requires some degree of manual intervention, the generation of virtual cohorts made of synthetic patients can be automated. However, the generation of a synthetic sample can still be computationally demanding to guarantee that it is clinically meaningful and that it re…

research product

Inter-Model Consistency and Complementarity: Learning from ex-vivo Imaging and Electrophysiological Data towards an Integrated Understanding of Cardiac Physiology

International audience; Computational models of the heart at various scales and levels of complexity have been independently developed, parameterised and validated using a wide range of experimental data for over four decades. However, despite remarkable progress, the lack of coordinated efforts to compare and combine these computational models has limited their impact on the numerous open questions in cardiac physiology. To address this issue, a comprehensive dataset has previously been made available to the community that contains the cardiac anatomy and fibre orientations from magnetic resonance imaging as well as epicardial transmembrane potentials from optical mapping measured on a per…

research product