0000000000297907

AUTHOR

Vincenzo De Michele

Steady-State X-Ray Radiation-Induced Attenuation in Canonical Optical Fibers

The so-called canonical optical fibers (OFs) are samples especially designed to highlight the impact of some manufacturing process parameters on the radiation responses. Thanks to the results obtained on these samples, it is thus possible to define new procedures to better control the behaviors of OFs in radiation environments. In this article, we characterized the responses, under steady-state X-rays, of canonical samples representative of the most common fiber types differing by their core-dopants: pure silica, Ge, Al, and P. Their radiation-induced attenuation (RIA) spectra were measured online at both room temperature (RT) and liquid nitrogen temperature (LNT), in the energy range [~0.6…

research product

Transient absorption with a femtosecond tunable excitation pump reveals the emission kinetics of color centers in amorphous silica.

We report a set of femtosecond (fs) transient absorption (TA) measurements following the dynamics of the so-called nonbridging oxygen hole center in silica, a model color center in wide bandgap amorphous solids, characterized by a very large Stokes shift between the UV excitation and its associated red emission at 1.9 eV. The changes in the TA spectrum were probed in the UV-visible range at various delays after photoexcitation and analyzed as a function of the UV excitation energy, in single-photon absorption conditions. The combination of the experiments helps to clarify the defect photocycle, highlighting how TA measurements with tunable UV excitation could represent a powerful tool to in…

research product

Photoluminescence of Point Defects in Silicon Dioxide by Femtosecond Laser Exposure

The nature of the radiation-induced point defects in amorphous silica is investigated through online photoluminescence (PL) under high intensity ultrashort laser pulses. Using 1030 nm femtosecond laser pulses with a repetition rate of 1 kHz, it is possible to study the induced color centers through their PL signatures monitored during the laser exposure. Their generation is driven by the nonlinear absorption of the light related to the high pulse peak powers provided by femtosecond laser, allowing to probe the optical properties of the laser exposed region. The experiment is conducted as a function of the laser pulse power in samples with different OH contents. The results highlight the dif…

research product

Pulsed X‐Ray Radiation Responses of Solarization‐Resistant Optical Fibers

International audience; The transient radiation‐induced attenuation (RIA) of two different versions of pure‐silica‐core (PSC) multimode optical fibers (so‐called “solarization‐resistant” fibers) exposed to nanosecond 1 MeV X‐ray pulses are investigated. On‐line RIA spectra measurements at both room temperature (RT) and liquid nitrogen temperatures (LNT) in the range 1–3.5 eV are performed. Following the RIA kinetics, the properties of the metastable defects that are bleached just after the pulse are discussed. The spectral decomposition of the RIA is performed using known Gaussian bands associated to point defects absorbing in this spectral range. For both fiber types, the generation and th…

research product

Multiphoton process investigation in silica by UV femtosecond laser

We investigated the interaction processes between high intensity femtosecond ultraviolet laser pulses and amorphous silica, leading to permanent refractive-index changes that are at the basis of advanced manufacturing for photonics devices. The experiment, carried out as a function of the laser power, improves our understanding on the strong-field ionization process by the monitoring of the 1.9 eV and 2.65 eV emissions, related to nonbridging oxygen hole centers and self-trapped exciton, respectively, induced in the exposed glass region. Our results clearly proved that the UV laser light band-to-band absorption is allowed in the multiphoton ionization limit, whose consecutive relaxation lea…

research product

Overview of radiation induced point defects in silica-based optical fibers

International audience; Silica-based optical fibers, fiber-based devices and optical fiber sensors are today integrated in a variety of harsh environments associated with radiation constraints. Under irradiation, the macroscopic properties of the optical fibers are modified through three main basic mechanisms: the radiation induced attenuation, the radiation induced emission and the radiation induced refractive index change. Depending on the fiber profile of use, these phenomena differently contribute to the degradation of the fiber performances and then have to be either mitigated for radiation tolerant systems or exploited to design radiation detectors and dosimeters. Considering the stro…

research product

Dynamics of supercooled confined water measured by deep inelastic neutron scattering

In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter ~ 20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid–liquid transition of supercooled confined water) on a “wet” sample with hydration h ~ 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually “dry” sample at h ~ 7% was also inve…

research product

Kinetic energy and radial momentum distribution of hydrogen and oxygen atoms of water confined in silica hydrogel in the temperature interval 170–325 K

Water is an ubiquitous liquid and it is necessary for life;. Studies on water are therefore of obvious scientific and .... technological relevance. In view of its peculiar physicalproperties (the so-called water anomalies, particularly relevant at low temperatures [1]), studies on water structureand dynamics in ample temperature intervals, covering also the supercooling region, have attracted much interest in recent years. In particular, studies focused on the supercooled phase are important in order to test theories and hypotheses[2,3], including the liquid-liquid phase transition hypothesis [4-6] and the related fragile-to-strong crossover observed inwater confined in silica matrices and …

research product

Near-IR- and UV-femtosecond laser waveguide inscription in silica glasses

The influence of laser parameters on silica based waveguide inscription is investigated by using femtosecond laser pulses at 1030 nm (near-IR) and at 343 nm (UV). Negative phase contrast microscopy technique is used to measure the refractive index contrast for different photo-inscribed waveguides and shows the effects of both laser wavelength and scanning speed. In particular, UV photons have a higher efficiency in the waveguide production process as also confirmed by the lower optical losses at 1550 nm in these waveguides. These measurements are combined with micro-Raman and photoluminescence techniques, highlighting that laser exposure induces both structural modification of the silica an…

research product