0000000000300030

AUTHOR

Tom Douce

Continuous-Variable Instantaneous Quantum Computing is Hard to Sample

Instantaneous quantum computing is a sub-universal quantum complexity class, whose circuits have proven to be hard to simulate classically in the Discrete-Variable (DV) realm. We extend this proof to the Continuous-Variable (CV) domain by using squeezed states and homodyne detection, and by exploring the properties of post-selected circuits. In order to treat post-selection in CVs we consider finitely-resolved homodyne detectors, corresponding to a realistic scheme based on discrete probability distributions of the measurement outcomes. The unavoidable errors stemming from the use of finitely squeezed states are suppressed through a qubit-into-oscillator GKP encoding of quantum information,…

research product

Probabilistic Fault-Tolerant Universal Quantum Computation and Sampling Problems in Continuous Variables

Continuous-Variable (CV) devices are a promising platform for demonstrating large-scale quantum information protocols. In this framework, we define a general quantum computational model based on a CV hardware. It consists of vacuum input states, a finite set of gates - including non-Gaussian elements - and homodyne detection. We show that this model incorporates encodings sufficient for probabilistic fault-tolerant universal quantum computing. Furthermore, we show that this model can be adapted to yield sampling problems that cannot be simulated efficiently with a classical computer, unless the polynomial hierarchy collapses. This allows us to provide a simple paradigm for short-term experi…

research product

Continuous-Variable Sampling from Photon-Added or Photon-Subtracted Squeezed States

We introduce a new family of quantum circuits in Continuous Variables and we show that, relying on the widely accepted conjecture that the polynomial hierarchy of complexity classes does not collapse, their output probability distribution cannot be efficiently simulated by a classical computer. These circuits are composed of input photon-subtracted (or photon-added) squeezed states, passive linear optics evolution, and eight-port homodyne detection. We address the proof of hardness for the exact probability distribution of these quantum circuits by exploiting mappings onto different architectures of sub-universal quantum computers. We obtain both a worst-case and an average-case hardness re…

research product