0000000000300241

AUTHOR

Tiantian Yang

Influence of cognitive-motor expertise on brain dynamics of anticipatory-based outcome processing.

Motor experience plays an important role in the ability to anticipate action outcomes, but little is known about the brain processes through which it modulates the preparation for unexpected events. To address this issue, EEG was employed while table tennis players and novices observed videos of serves in order to predict the expected ball direction based on the kinematics of a model's movement. Furthermore, we manipulated the congruency between the model's body kinematics and the subsequent ball trajectory while assessing the cerebral cortical activity of novices and experts to understand how experts respond to unexpected outcomes. Experts were more accurate in predicting the ball trajecto…

research product

Individual Independent Component Analysis on EEG: Event-Related Responses Vs. Difference Wave of Deviant and Standard Responses

Independent component analysis (ICA) is often used to spatially filter event-related potentials (ERPs). When an oddball paradigm is applied to elicit ERPs, difference wave (DW, responses of deviant stimuli minus those of standard ones) is often used to remove the common responses between the deviant and the standard. Thus, DW can be produced first, and then ICA is used to decompose the DW. Or, ICA is performed on responses of the deviant and standard stimuli separately, and then DW is applied on the filtered responses. In this study, we compared the two approaches to analyzing mismatch negativity (MMN). We found that DW introduced noise in the time and space domains, resulting in more diffi…

research product

Deviance detection in sound frequency in simple and complex sounds in urethane-anesthetized rats

Mismatch negativity (MMN), which is an electrophysiological response demonstrated in humans and animals, reflects memory-based deviance detection in a series of sounds. However, only a few studies on rodents have used control conditions that were sufficient in eliminating confounding factors that could also explain differential responses to deviant sounds. Furthermore, it is unclear if change detection occurs similarly for sinusoidal and complex sounds. In this study, we investigated frequency change detection in urethane-anesthetized rats by recording local-field potentials from the dura above the auditory cortex. We studied change detection in sinusoidal and complex sounds in a series of …

research product