0000000000300642

AUTHOR

Bernd Wissinger

showing 6 related works from this author

A new vicious cycle involving glutamate excitotoxicity, oxidative stress and mitochondrial dynamics

2011

Glutamate excitotoxicity leads to fragmented mitochondria in neurodegenerative diseases, mediated by nitric oxide and S-nitrosylation of dynamin-related protein 1, a mitochondrial outer membrane fission protein. Optic atrophy gene 1 (OPA1) is an inner membrane protein important for mitochondrial fusion. Autosomal dominant optic atrophy (ADOA), caused by mutations in OPA1, is a neurodegenerative disease affecting mainly retinal ganglion cells (RGCs). Here, we showed that OPA1 deficiency in an ADOA model influences N-methyl-D-aspartate (NMDA) receptor expression, which is involved in glutamate excitotoxicity and oxidative stress. Opa1enu/+mice show a slow progressive loss of RGCs, activation …

Retinal Ganglion CellsCancer ResearchReceptor expressionExcitotoxicityApoptosisNeurodegenerativeMitochondrionEyemedicine.disease_causeGTP PhosphohydrolasesMice0302 clinical medicineReceptorsoxidative stressPhosphorylationbcl-2-Associated X Protein0303 health sciencesbiologyGlutamate receptorMitochondriaUp-RegulationCell biologymitochondrial fusionAutosomal DominantOriginal Articlebcl-Associated Death ProteinMitochondrial fissionN-Methyl-D-AspartateBiotechnologymitochondrial fragmentationOncology and CarcinogenesisImmunologybcl-X ProteinSOD2Glutamic AcidReceptors N-Methyl-D-AspartateNMDA receptorsCell Line03 medical and health sciencesCellular and Molecular NeuroscienceBcl-2-associated X proteinOptic Atrophy Autosomal DominantmedicineAnimalsEye Disease and Disorders of Vision030304 developmental biologySuperoxide DismutaseNeurosciencesCell BiologyMolecular biologyeye diseasesOxidative StressOptic AtrophyMutationbiology.proteinOPA1 mutationBiochemistry and Cell Biologysense organsglutamate excitotoxicity030217 neurology & neurosurgeryCell Death & Disease
researchProduct

Deletion of myosin VI causes slow retinal optic neuropathy and age-related macular degeneration (AMD)-relevant retinal phenotype

2015

The unconventional myosin VI, a member of the actin-based motor protein family of myosins, is expressed in the retina. Its deletion was previously shown to reduce amplitudes of the a- and b-waves of the electroretinogram. Analyzing wild-type and myosin VI-deficient Snell’s Waltzer mice in more detail, the expression pattern of myosin VI in retinal pigment epithelium, outer limiting membrane, and outer plexiform layer could be linked with differential progressing ocular deficits. These encompassed reduced a-waves and b-waves and disturbed oscillatory potentials in the electroretinogram, photoreceptor cell death, retinal microglia infiltration, and formation of basal laminar deposits. A pheno…

Genotypegenetic structuresOuter retinaTranslocator protein TSPOOuter plexiform layermacromolecular substancesBiologyRetinaPhotoreceptor cellMouse modelStereociliaMacular DegenerationMiceCellular and Molecular Neurosciencechemistry.chemical_compoundOptic Nerve DiseasesMyosinmedicineAnimalsBipolar cellMolecular BiologyPharmacologyRetinaRetinal pigment epitheliumMyosin Heavy ChainsNeurodegenerationInner retinaChoriocapillarisRetinalCell BiologyAnatomyMacular degenerationmedicine.diseaseSynapseeye diseasesCell biologyMice Inbred C57BLmedicine.anatomical_structurechemistryMolecular MedicineMicrogliasense organsGene DeletionResearch ArticlePhotoreceptor Cells VertebrateCellular and Molecular Life Sciences
researchProduct

Mutation spectrum and clinical investigation of achromatopsia patients with mutations in the GNAT2 gene

2019

Achromatopsia (ACHM) is a hereditary cone photoreceptor disorder characterized by the inability to discriminate colors, nystagmus, photophobia, and low-visual acuity. Six genes have been associated with this rare autosomal recessively inherited disease, including the GNAT2 gene encoding the catalytic α-subunit of the G-protein transducin which is expressed in the cone photoreceptor outer segment. Out of a cohort of 1,116 independent families diagnosed with a primary clinical diagnosis of ACHM, we identified 23 patients with ACHM from 19 independent families with likely causative mutations in GNAT2, representing 1.7% of our large ACHM cohort. In total 22 different potentially disease-causing…

AdultMaleAchromatopsiagenetic structuresAdolescentChild preschoolDNA Copy Number VariationsColor Vision DefectsBiologymedicine.disease_causeHeterotrimeric GTP-Binding Proteins/genetics03 medical and health sciencesExonGene duplicationGeneticsmedicineHumansGenetic Predisposition to DiseaseCopy-number variationColor Vision Defects/geneticsChildGenetics (clinical)030304 developmental biologyAgedGenetics0303 health sciencesGNAT2MutationSettore MED/30 - Malattie Apparato Visivo030305 genetics & heredityBreakpointInfantSequence Analysis DNAExonsMiddle Agedmedicine.diseaseHeterotrimeric GTP-Binding ProteinsPhotoreceptor outer segmenteye diseasesPedigreeSettore BIO/18 - GeneticaSequence Analysis DNA/methodsyoung adultFemalesense organsachromatopsia copy number variations GNAT2 mutations transducinmutation
researchProduct

CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia

2005

Contains fulltext : 47591.pdf (Publisher’s version ) (Closed access) Achromatopsia is a congenital, autosomal recessively inherited disorder characterized by a lack of color discrimination, low visual acuity (<0.2), photophobia, and nystagmus. Mutations in the genes for CNGA3, CNGB3, and GNAT2 have been associated with this disorder. Here, we analyzed the spectrum and prevalence of CNGB3 gene mutations in a cohort of 341 independent patients with achromatopsia. In 163 patients, CNGB3 mutations could be identified. A total of 105 achromats carried apparent homozygous mutations, 44 were compound (double) heterozygotes, and 14 patients had only a single mutant allele. The derived CNGB3 mutatio…

AchromatopsiaGenetics and epigenetic pathways of disease [NCMLS 6]genetic structuresGATED CATION CHANNELCNGB3 mutationsNonsense mutationMutantCyclic Nucleotide-Gated Cation ChannelsColor Vision DefectsGenes RecessiveLocus (genetics)Gene mutationBiologyTOTAL COLOURBLINDNESSIon ChannelsCLONINGDogscyclic nucleotide-gated channelGNAT2GeneticsmedicineLOCUSAnimalsHumansMissense mutationNeurosensory disorders [UMCN 3.3]ACHM3 locusDog DiseasesAlleleAllelesGenetics (clinical)Geneticstotal colorblindnessGNAT2PHOTORECEPTORSDYSTROPHYmedicine.diseaseCONE DEGENERATIONGENEeye diseasesPhenotypeEvaluation of complex medical interventions [NCEBP 2]MutationRetinal Cone Photoreceptor Cellssense organsachromatopsiarod monochromacyALPHA-SUBUNIThuman activities
researchProduct

Mutation Analysis Identifies GUCY2D as the Major Gene Responsible for Autosomal Dominant Progressive Cone Degeneration

2008

PURPOSE. Heterozygous mutations in the GUCY2D gene, which encodes the membrane-bound retinal guanylyl cyclase-1 protein (RetGC-1), have been shown to cause autosomal dominant inherited cone degeneration and cone–rod degeneration (adCD, adCRD). The present study was a comprehensive screening of the GUCY2D gene in 27 adCD and adCRD unrelated families of these rare disorders. METHODS. Mutation analysis was performed by direct sequencing as well as PCR and subsequent restriction length polymorphism analysis (PCR/RFLP). Haplotype analysis was performed in selected patients by using microsatellite markers. RESULTS. GUCY2D gene mutations were identified in 11 (40%) of 27 patients, and all mutation…

Retinal degenerationMaleDNA Mutational AnalysisReceptors Cell SurfaceBiologyPolymerase Chain ReactionArticlemedicineElectroretinographyMissense mutationHumansGenetic Predisposition to DiseaseCodonGeneGeneticsHaplotypeRetinal DegenerationDNAmedicine.diseasePrognosisRod Cell Outer SegmentMajor geneMolecular biologyPedigreeHaplotypesGuanylate CyclaseMutationMutation testingDisease ProgressionGUCY2DFemaleRestriction fragment length polymorphism
researchProduct

Mutations in the Cone Photoreceptor G-Protein α-Subunit Gene GNAT2 in Patients with Achromatopsia

2002

Achromatopsia is an autosomal recessively inherited visual disorder that is present from birth and that features the absence of color discrimination. We here report the identification of five independent families with achromatopsia that segregate protein-truncation mutations in the GNAT2 gene, located on chromosome 1p13. GNAT2 encodes the cone photoreceptor-specific alpha-subunit of transducin, a G-protein of the phototransduction cascade, which couples to the visual pigment(s). Our results demonstrate that GNAT2 is the third gene implicated in achromatopsia.

Achromatopsiagenetic structuresMolecular Sequence DataColor Vision DefectsBiologymedicine.disease_causeRetinal Cone Photoreceptor CellsReportGNAT2 geneGeneticsmedicineHumansGenetics(clinical)TransducinGeneGenetics (clinical)GeneticsGNAT2Mutationmedicine.diseaseRod monocromacyeye diseasesPedigreeColor Vision DefectsMutationRetinal Cone Photoreceptor CellsAchromatopsiaTransducinsense organsVisual phototransductionThe American Journal of Human Genetics
researchProduct