6533b824fe1ef96bd12800f8

RESEARCH PRODUCT

Mutation spectrum and clinical investigation of achromatopsia patients with mutations in the GNAT2 gene

Susanne KohlIsabelle AudoBernd WissingerBritta BaumannJulia FeldenKlaus RütherMartin MckibbinThomas RosenbergUlrich KellnerIsabelle MeunierBéatrice BocquetSamuel G. JacobsonBernhard JurkliesLine KesselBlanca Garcia-sandovalBirgit LorenzKatarina StinglThomy De RavelManir AliCarmen AyusoIngele CasteelsMaria Vadalà

subject

AdultMaleAchromatopsiagenetic structuresAdolescentChild preschoolDNA Copy Number VariationsColor Vision DefectsBiologymedicine.disease_causeHeterotrimeric GTP-Binding Proteins/genetics03 medical and health sciencesExonGene duplicationGeneticsmedicineHumansGenetic Predisposition to DiseaseCopy-number variationColor Vision Defects/geneticsChildGenetics (clinical)030304 developmental biologyAgedGenetics0303 health sciencesGNAT2MutationSettore MED/30 - Malattie Apparato Visivo030305 genetics & heredityBreakpointInfantSequence Analysis DNAExonsMiddle Agedmedicine.diseaseHeterotrimeric GTP-Binding ProteinsPhotoreceptor outer segmenteye diseasesPedigreeSettore BIO/18 - GeneticaSequence Analysis DNA/methodsyoung adultFemalesense organsachromatopsia copy number variations GNAT2 mutations transducinmutation

description

Achromatopsia (ACHM) is a hereditary cone photoreceptor disorder characterized by the inability to discriminate colors, nystagmus, photophobia, and low-visual acuity. Six genes have been associated with this rare autosomal recessively inherited disease, including the GNAT2 gene encoding the catalytic α-subunit of the G-protein transducin which is expressed in the cone photoreceptor outer segment. Out of a cohort of 1,116 independent families diagnosed with a primary clinical diagnosis of ACHM, we identified 23 patients with ACHM from 19 independent families with likely causative mutations in GNAT2, representing 1.7% of our large ACHM cohort. In total 22 different potentially disease-causing variants, of which 12 are novel, were identified. The mutation spectrum also includes a novel copy number variation, a heterozygous duplication of exon 4, of which the breakpoint matches exactly that of the previously reported exon 4 deletion. Two patients carry just a single heterozygous variant. In addition to our previous study on GNAT2-ACHM, we also present detailed clinical data of these patients.

10.1002/humu.23768https://doi.org/10.1002/humu.23768