0000000000302547

AUTHOR

V. Sibille

showing 17 related works from this author

Journal of High Energy Physics

2014

The Double Chooz experiment presents improved measurements of the neutrino mixing angle $\theta_{13}$ using the data collected in 467.90 live days from a detector positioned at an average distance of 1050 m from two reactor cores at the Chooz nuclear power plant. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties with respect to previous publications, whereas the efficiency of the $\bar\nu_{e}$ signal has increased. The value of $\theta_{13}$ is measured to be $\sin^{2}2\theta_{13} = 0.090 ^{+0.032}_{-0.029}$ from a fit to the observed energy spectrum. Deviations from the reactor $\bar\nu_{e}$ prediction observed ab…

Nuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Physics - Instrumentation and DetectorsNeutrino Detectors and TelescopeFOS: Physical sciencesCHOOZ7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)ExperimentDistortion0103 physical sciencesEnergy spectrum[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsMixing (physics)PhysicsNeutrino Detectors and Telescopes010308 nuclear & particles physicsOscillationPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorFunction (mathematics)Instrumentation and Detectors (physics.ins-det)OscillationNeutrinoInstrumentation and Detectors
researchProduct

Precision Muon Reconstruction in Double Chooz

2014

We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a thro…

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical sciencesSTRIPSDouble Chooz; Muon reconstruction; Neutrino detector[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]CHOOZScintillatorHigh Energy Physics - Experimentlaw.inventionNONuclear physicsNeutrino detectorHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]InstrumentationImage resolutionPhysicsMuonDetectorReconstruction algorithmInstrumentation and Detectors (physics.ins-det)Double ChoozNeutrino detectorPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentMuon reconstruction
researchProduct

Muon capture on light isotopes measured with the Double Chooz detector

2016

Using the Double Chooz detector, designed to measure the neutrino mixing angle $\theta_{13}$, the products of $\mu^-$ capture on $^{12}$C, $^{13}$C, $^{14}$N and $^{16}$O have been measured. Over a period of 489.5 days, $2.3\times10^6$ stopping cosmic $\mu^-$ have been collected, of which $1.8\times10^5$ captured on carbon, nitrogen, or oxygen nuclei in the inner detector scintillator or acrylic vessels. The resulting isotopes were tagged using prompt neutron emission (when applicable), the subsequent beta decays, and, in some cases, $\beta$-delayed neutrons. The most precise measurement of the rate of $^{12}\mathrm C(\mu^-,\nu)^{12}\mathrm B$ to date is reported: $6.57^{+0.11}_{-0.21}\time…

PhysicsSemileptonic decayParticle physicseducation.field_of_studyMuon010308 nuclear & particles physicsPopulationneutrino physic01 natural sciencesMuon captureNuclear physics13. Climate action0103 physical sciencesHigh Energy Physics::ExperimentNeutronProduction (computer science)Neutrino010306 general physicsGround stateeducation
researchProduct

First operation of the KATRIN experiment with tritium

2020

AbstractThe determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of $$\upbeta $$β-decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of $$0.2\hbox { eV}$$0.2eV ($$90\%$$90% CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was …

Physics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsFOS: Physical scienceslcsh:Astrophysics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]TritiumKATRIN01 natural sciencesantineutrino/e: massHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)lcsh:QB460-4660103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]lcsh:Nuclear and particle physics. Atomic energy. RadioactivityMass scaleddc:530Electron Capture[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsEngineering (miscellaneous)Nuclear ExperimentAstroparticle physicsPhysics010308 nuclear & particles physicstritiumPhysicsQuímicaInstrumentation and Detectors (physics.ins-det)sensitivityddc:lcsh:QC770-798TritiumHigh Energy Physics::ExperimentNeutrinoPräzisionsexperimente - Abteilung BlaumNeutrino Mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Electron neutrinoperformanceKATRINAstrophysics - Cosmology and Nongalactic Astrophysicsexperimental results
researchProduct

Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8

2019

The Cyclotron Radiation Emission Spectroscopy (CRES) technique pioneered by Project 8 measures electromagnetic radiation from individual electrons gyrating in a background magnetic field to construct a highly precise energy spectrum for beta decay studies and other applications. The detector, magnetic trap geometry, and electron dynamics give rise to a multitude of complex electron signal structures which carry information about distinguishing physical traits. With machine learning models, we develop a scheme based on these traits to analyze and classify CRES signals. Understanding and proper use of these traits will be instrumental to improve cyclotron frequency reconstruction and help Pro…

CyclotronGeneral Physics and AstronomyFOS: Physical sciencesElectronMachine learningcomputer.software_genre01 natural sciencesSignalElectromagnetic radiation010305 fluids & plasmaslaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)lawMagnetic trap0103 physical sciencesddc:530Emission spectrumCyclotron radiationNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsbusiness.industryPhysicsDetector3. Good healthArtificial intelligencebusinesscomputer
researchProduct

Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment

2018

Arenz, M., et al. “Reduction of Stored-Particle Background by a Magnetic Pulse Method at the KATRIN Experiment.” The European Physical Journal C, vol. 78, no. 9, Sept. 2018. © 2018 The Authors

Speichertechnik - Abteilung BlaumPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Field (physics)Physics::Instrumentation and DetectorsFOS: Physical scienceslcsh:AstrophysicsElectronKATRIN01 natural sciencesradon: nuclideNeutrino mass0103 physical scienceslcsh:QB460-466coillcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsnumerical calculationsEngineering (miscellaneous)background: radioactivitybackground: suppressionPhysicsSpectrometer010308 nuclear & particles physicsPhysicsOrder (ring theory)Monte Carlo methodsInstrumentation and Detectors (physics.ins-det)Radon backgroundPulse (physics)13. Climate actionBackground reduction methodsPartículaslcsh:QC770-798spectrometerAtomic physicsElectricidadElectron neutrinoKATRIN
researchProduct

Suppression of Penning discharges between the KATRIN spectrometers

2020

The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)neutrino mass with a sensitivity of $0.2\textrm{ eV/c}^2$ (90$\%$ C.L.) by precisely measuring the endpoint region of the tritium $\beta$-decay spectrum. It uses a tandem of electrostatic spectrometers working as MAC-E (magnetic adiabatic collimation combined with an electrostatic) filters. In the space between the pre-spectrometer and the main spectrometer, an unavoidable Penning trap is created when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create a…

Speichertechnik - Abteilung BlaumPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsPenning trapFOS: Physical scienceslcsh:AstrophysicsSuperconducting magnetElectronTritiumKATRIN01 natural sciencesNuclear physics0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. RadioactivityElectron Captureddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentEngineering (miscellaneous)PhysicsSpectrometer010308 nuclear & particles physicsPhysicsInstrumentation and Detectors (physics.ins-det)Químicamagnet: superconductivityspectrometer: electrostaticPenning trapBeamlineBeta (plasma physics)electron: backgroundlcsh:QC770-798NeutrinoNeutrino MassKATRIN
researchProduct

First transmission of electrons and ions through the KATRIN beamline

2018

The Karlsruhe Tritium Neutrino (KATRIN) experiment is a large-scale effort to probe the absolute neutrino mass scale with a sensitivity of 0.2 eV (90% confidence level), via a precise measurement of the endpoint spectrum of tritium β-decay. This work documents several KATRIN commissioning milestones: the complete assembly of the experimental beamline, the successful transmission of electrons from three sources through the beamline to the primary detector, and tests of ion transport and retention. In the First Light commissioning campaign of autumn 2016, photoelectrons were generated at the rear wall and ions were created by a dedicated ion source attached to the rear section; in July 2017, …

Physics - Instrumentation and DetectorsIon beamFOS: Physical sciencesbeam transportion: beam[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]KATRIN7. Clean energy01 natural sciencesIonNuclear physics0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]electron: beam010306 general physicsInstrumentation[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear ExperimentMathematical Physicsactivity reportPhysics010308 nuclear & particles physicsphotoelectron: emissionInstrumentation and Detectors (physics.ins-det)Photoelectric effectstabilitysensitivityIon sourceddc:BeamlineCathode rayNeutrinoperformanceKATRIN
researchProduct

Bayesian Analysis of a Future Beta Decay Experiment's Sensitivity to Neutrino Mass Scale and Ordering

2021

Bayesian modeling techniques enable sensitivity analyses that incorporate detailed expectations regarding future experiments. A model-based approach also allows one to evaluate inferences and predicted outcomes, by calibrating (or measuring) the consequences incurred when certain results are reported. We present procedures for calibrating predictions of an experiment's sensitivity to both continuous and discrete parameters. Using these procedures and a new Bayesian model of the $\beta$-decay spectrum, we assess a high-precision $\beta$-decay experiment's sensitivity to the neutrino mass scale and ordering, for one assumed design scenario. We find that such an experiment could measure the el…

Semileptonic decaydata analysis methodParticle physicsBayesian probabilityFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Bayesian inferenceBayesian01 natural sciencesMeasure (mathematics)statistics: Bayesianmass: scaleHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesCalibrationneutrino: massSensitivity (control systems)Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsElectroweak InteractionProbability and statisticssemileptonic decaycalibrationsensitivityneutrino: nuclear reactorHigh Energy Physics - Phenomenologymass: calibration[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physics - Data Analysis Statistics and ProbabilityspectralHigh Energy Physics::ExperimentNeutrinoData Analysis Statistics and Probability (physics.data-an)[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis Statistics and Probability [physics.data-an]Symmetries
researchProduct

Calibration of high voltages at the ppm level by the difference of $^{83\mathrm{m}}$Kr conversion electron lines at the KATRIN experiment

2018

The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at − 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two [superscript 83m]Kr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN’s commissioning measurements in July 2…

Speichertechnik - Abteilung BlaumPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)FOS: Physical sciences7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesCalibrationddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsEngineering (miscellaneous)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]PhysicsTeoría de los quantaSpectrometer010308 nuclear & particles physicsPhysicsVoltage dividerInstrumentation and Detectors (physics.ins-det)MetrologyNeutrinoEnergy (signal processing)VoltageKATRIN
researchProduct

High-resolution spectroscopy of gaseous $^\mathrm{83m}$Kr conversion electrons with the KATRIN experiment

2020

In this work, we present the first spectroscopic measurements of conversion electrons originating from the decay of metastable gaseous $^\mathrm{83m}$Kr with the Karlsruhe Tritium Neutrino (KATRIN) experiment. The results obtained in this calibration measurement represent a major commissioning milestone for the upcoming direct neutrino mass measurement with KATRIN. The successful campaign demonstrates the functionalities of the full KATRIN beamline. The KATRIN main spectrometer's excellent energy resolution of ~ 1 eV made it possible to determine the narrow K-32 and L$_3$-32 conversion electron line widths with an unprecedented precision of ~ 1 %.

Nuclear and High Energy PhysicsSpeichertechnik - Abteilung BlaumPhysics - Instrumentation and DetectorsResolution (mass spectrometry)Physics::Instrumentation and Detectorsenergy resolutionFOS: Physical sciencesElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]KATRIN7. Clean energy01 natural sciencesAtomicneutrino massNuclear physicsParticle and Plasma Physicsconversion electronsMetastability0103 physical sciencesNuclearddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsSpectroscopyNuclear ExperimentPhysicsSpectrometerelectrostatic spectrometer010308 nuclear & particles physicsPhysicskrypton: decayMolecularInstrumentation and Detectors (physics.ins-det)krypton: nuclide530 PhysikcalibrationNuclear & Particles Physicsddc:3. Good healthBeamlineelectron: energy spectrumNeutrinoperformanceKATRIN
researchProduct

Locust: C++ software for simulation of RF detection

2019

The Locust simulation package is a new C++ software tool developed to simulate the measurement of time-varying electromagnetic fields using RF detection techniques. Modularity and flexibility allow for arbitrary input signals, while concurrently supporting tight integration with physics-based simulations as input. External signals driven by the Kassiopeia particle tracking package are discussed, demonstrating conditional feedback between Locust and Kassiopeia during software execution. An application of the simulation to the Project 8 experiment is described. Locust is publicly available at https://github.com/project8/locust_mc.

PhysicsFlexibility (engineering)Modularity (networks)Physics - Instrumentation and Detectorsbiology010308 nuclear & particles physicsbusiness.industrySoftware toolFOS: Physical sciencesGeneral Physics and AstronomyInstrumentation and Detectors (physics.ins-det)Computational Physics (physics.comp-ph)Tracking (particle physics)biology.organism_classification01 natural sciencesParticle detectorSoftware0103 physical sciencesAntenna (radio)010306 general physicsbusinessPhysics - Computational PhysicsComputer hardwareLocust
researchProduct

Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments

2019

The recently developed technique of Cyclotron Radiation Emission Spectroscopy (CRES) uses frequency information from the cyclotron motion of an electron in a magnetic bottle to infer its kinetic energy. Here we derive the expected radio frequency signal from an electron in a waveguide CRES apparatus from first principles. We demonstrate that the frequency-domain signal is rich in information about the electron's kinematic parameters, and extract a set of measurables that in a suitably designed system are sufficient for disentangling the electron's kinetic energy from the rest of its kinematic features. This lays the groundwork for high-resolution energy measurements in future CRES experimen…

PhysicsPhysics - Instrumentation and Detectors010308 nuclear & particles physicsCyclotronFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)ElectronEffective radiated powerKinetic energy01 natural sciencesSignal3. Good healthComputational physicslaw.inventionlaw0103 physical sciencesCyclotron radiationEmission spectrumNuclear Experiment (nucl-ex)Neutrino010306 general physicsNuclear Experiment
researchProduct

Calibration of high voltages at the ppm level by the difference of $$^{83{\mathrm{m}}}$$ 83m Kr conversion electron lines at the KATRIN experiment

2018

The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at − 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two $$^{83{\mathrm{m}}}$$ 83m Kr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN’s commissioning measurements …

lcsh:QB460-466lcsh:QC770-798lcsh:Astrophysicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityEuropean Physical Journal C: Particles and Fields
researchProduct

Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN

2019

We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (−1.0−1.1+0.9) eV2. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a …

Semileptonic decayPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and DetectorsFOS: Physical sciencesGeneral Physics and AstronomyKinematicsElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]KATRIN01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)mass: scaleneutrino: mass: measured0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530S066MAESensitivity (control systems)Limit (mathematics)structure[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicstritiumPhysicsformationS066M2EInstrumentation and Detectors (physics.ins-det)semileptonic decaysensitivityddc:kinematicsElementary Particles and Fieldselectron: energy spectrumHigh Energy Physics::ExperimentPräzisionsexperimente - Abteilung BlaumNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)Astrophysics - Cosmology and Nongalactic AstrophysicsKATRINexperimental results
researchProduct

Gamma-induced background in the KATRIN main spectrometer

2019

The KATRIN experiment aims to measure the effective electron antineutrino mass $$m_{\overline{\nu }_e}$$ mν¯e with a sensitivity of $${0.2}\,{\hbox {eV}/\hbox {c}^2}$$ 0.2eV/c2 using a gaseous tritium source combined with the MAC-E filter technique. A low background rate is crucial to achieving the proposed sensitivity, and dedicated measurements have been performed to study possible sources of background electrons. In this work, we test the hypothesis that gamma radiation from external radioactive sources significantly increases the rate of background events created in the main spectrometer (MS) and observed in the focal-plane detector. Using detailed simulations of the gamma flux in the e…

Speichertechnik - Abteilung BlaumPhysics - Instrumentation and Detectorsgamma ray: backgroundshieldingshielding: magneticPhysicsFOS: Physical scienceslcsh:AstrophysicsInstrumentation and Detectors (physics.ins-det)electron: secondarysensitivityKATRINbackground: lowlcsh:QB460-466electron: backgroundlcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530gamma ray: flux[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Electromagnetismonumerical calculationselectrostatic
researchProduct

Measurement of θ13 in Double Chooz using neutron captures on hydrogen with novel background rejection techniques

2016

The Double Chooz collaboration presents a measurement of the neutrino mixing angle θ[subscript 13] using reactor [bar over ν[subscript e]] observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050 m from two reactor cores. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties. Accidental coincidences, the dominant background in this analysis, are suppressed by more than an order of magnitude with respec…

data analysis methodNuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsNeutrino Detectors and TelescopeGadoliniumnuclear reactor [antineutrino/e]energy spectrumchemistry.chemical_elementFluxmixing angle: measured [neutrino]CHOOZ7. Clean energy01 natural sciencesHigh Energy Physics - Experimentflux [antineutrino]Flavor physicscapture [n]0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Electroweak interactionddc:530Neutron010306 general physicsPhysicsNeutrino Detectors and Telescopesbackground010308 nuclear & particles physicsoscillation [neutrino]suppressionDouble ChoozNeutron captureOscillationchemistryhydrogenInverse beta decayFlavor physicspectralHigh Energy Physics::ExperimentgadoliniumNeutrinoOrder of magnitudeexperimental results
researchProduct