0000000000303159

AUTHOR

Norbert Kiss

0000-0002-9947-1755

Challenges of automatic processing of large amount of skin lesion multispectral data

This work will describe the challenges involved in setting up automatic processing for a large differentiated data set. In this study, a multispectral (skin diffuse reflection images using 526nm (green), 663nm (red), and 964nm (infrared) illumination and autofluorescence (AF) image using 405 nm excitation) data set with 756 lesions (3024 images) was processed. Previously, using MATLAB software, finding markers, correctly segmenting images with dark edges and image alignment were the main causes of the problems in automatic data processing. To improve automatic processing and eliminate the use of licensed software, the latter was substituted with the open source Python environment. For more …

research product

Autofluorescence Imaging of the Skin Is an Objective Non-Invasive Technique for Diagnosing Pseudoxanthoma Elasticum

Pseudoxanthoma elasticum (PXE) is a rare multisystemic autosomal recessive connective tissue disease. In most cases, skin manifestations of PXE are the first to develop, followed later by severe ocular and cardiovascular complications. In our present study, in addition to dermoscopy, we introduced novel techniques, autofluorescence (AF) and diffuse reflectance (DR) imaging for the assessment of affected skin sites of five PXE patients. PXE-affected skin areas in most skin sites showed a previously observed pattern upon dermoscopic examination. With the novel imaging, PXE-affected skin lesions displayed high AF intensity. During our measurements, significantly higher mean, minimum and maximu…

research product

089 Autofluorescence imaging for non-invasive visualization and quantification of skin lesions of patients with pseudoxanthoma elasticum

research product

Visualization of Keratin with Diffuse Reflectance and Autofluorescence Imaging and Nonlinear Optical Microscopy in a Rare Keratinopathic Ichthyosis.

Keratins are one of the main fluorophores of the skin. Keratinization disorders can lead to alterations in the optical properties of the skin. We set out to investigate a rare form of keratinopathic ichthyosis caused by KRT1 mutation with two different optical imaging methods. We used a newly developed light emitting diode (LED) based device to analyze autofluorescence signal at 405 nm excitation and diffuse reflectance at 526 nm in vivo. Mean autofluorescence intensity of the hyperkeratotic palmar skin was markedly higher in comparison to the healthy control (162.35 vs. 51.14). To further assess the skin status, we examined samples from affected skin areas ex vivo by nonlinear optical micr…

research product

Non-invasive LED-based screening solution for skin cancer

Skin cancer is the most common type of malignant tumors in humans. Early diagnosis is the key to successful surgical treatment. In this work we present a non-invasive screening tool for early stage detection of skin cancer and also for the evaluation of post-operative scars.

research product

Quantitative Multispectral Imaging Differentiates Melanoma from Seborrheic Keratosis.

Melanoma is a melanocytic tumor that is responsible for the most skin cancer-related deaths. By contrast, seborrheic keratosis (SK) is a very common benign lesion with a clinical picture that may resemble melanoma. We used a multispectral imaging device to distinguish these two entities, with the use of autofluorescence imaging with 405 nm and diffuse reflectance imaging with 525 and 660 narrow-band LED illumination. We analyzed intensity descriptors of the acquired images. These included ratios of intensity values of different channels, standard deviation and minimum/maximum values of intensity of the lesions. The pattern of the lesions was also assessed with the use of particle analysis. …

research product