0000000000304821
AUTHOR
M. Guigue
Project 8 detector upgrades for a tritium beta decay spectrum using cyclotron radiation
Following the successful observation of single conversion electrons from $^{83m}$Kr using Cyclotron Radiation Emission Spectroscopy (CRES), Project 8 is now advancing its focus toward a tritium beta decay spectrum. A tritium spectrum will be an important next step toward a direct measurement of the neutrino mass for Project 8. Here we discuss recent progress on the development and commissioning of a new gas cell for use with tritium, and outline the primary goals of the experiment for the near future.
Search for Electron Antineutrino Appearance in a Long-baseline Muon Antineutrino Beam
Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. T2K observes 15 candidate electron antineutrino events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40 σ and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and a…
Measurements of ν̅ μ and ν̅ μ + ν μ charged-current cross-sections without detected pions or protons on water and hydrocarbon at a mean anti-neutrino energy of 0.86 GeV
Abstract We report measurements of the flux-integrated ν̅μ and ν̅μ + νμ charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam with a mean beam energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced $\mu^\pm$ and no detected charged pion or proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton Module. The phase space of muons is restricted to the high-detection efficiency region, $p_{\mu}>400~{\rm MeV}/c$ and $\theta_{\mu}<30^{\circ}$, in the laboratory frame. An absence of pions and protons in the …
First T2K measurement of transverse kinematic imbalance in the muon-neutrino charged-current single- π+ production channel containing at least one proton
This paper reports the first T2K measurement of the transverse kinematic imbalance in the single-$\pi^+$ production channel of neutrino interactions. We measure the differential cross sections in the muon-neutrino charged-current interaction on hydrocarbon with a single $\pi^+$ and at least one proton in the final state, at the ND280 off-axis near detector of the T2K experiment. The extracted cross sections are compared to the predictions from different neutrino-nucleus interaction event generators. Overall, the results show a preference for models which have a more realistic treatment of nuclear medium effects including the initial nuclear state and final-state interactions.
Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8
The Cyclotron Radiation Emission Spectroscopy (CRES) technique pioneered by Project 8 measures electromagnetic radiation from individual electrons gyrating in a background magnetic field to construct a highly precise energy spectrum for beta decay studies and other applications. The detector, magnetic trap geometry, and electron dynamics give rise to a multitude of complex electron signal structures which carry information about distinguishing physical traits. With machine learning models, we develop a scheme based on these traits to analyze and classify CRES signals. Understanding and proper use of these traits will be instrumental to improve cyclotron frequency reconstruction and help Pro…
Simultaneous measurement of the muon neutrino charged-current cross section on oxygen and carbon without pions in the final state at T2K
Authors: K. Abe,56 N. Akhlaq,45 R. Akutsu,57 A. Ali,32 C. Alt,11 C. Andreopoulos,54,34 L. Anthony,21 M. Antonova,19 S. Aoki,31 A. Ariga,2 T. Arihara,59 Y. Asada,69 Y. Ashida,32 E. T. Atkin,21 Y. Awataguchi,59 S. Ban,32 M. Barbi,46 G. J. Barker,66 G. Barr,42 D. Barrow,42 M. Batkiewicz-Kwasniak,15 A. Beloshapkin,26 F. Bench,34 V. Berardi,22 L. Berns,58 S. Bhadra,70 S. Bienstock,53 S. Bolognesi,6 T. Bonus,68 B. Bourguille,18 S. B. Boyd,66 A. Bravar,13 D. Bravo Berguño,1 C. Bronner,56 S. Bron,13 A. Bubak,51 M. Buizza Avanzini ,10 T. Campbell,7 S. Cao,16 S. L. Cartwright,50 M. G. Catanesi,22 A. Cervera,19 D. Cherdack,17 N. Chikuma,55 G. Christodoulou,12 M. Cicerchia,24,† J. Coleman,34 G. Collazu…
Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector
The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a ga…
Bayesian Analysis of a Future Beta Decay Experiment's Sensitivity to Neutrino Mass Scale and Ordering
Bayesian modeling techniques enable sensitivity analyses that incorporate detailed expectations regarding future experiments. A model-based approach also allows one to evaluate inferences and predicted outcomes, by calibrating (or measuring) the consequences incurred when certain results are reported. We present procedures for calibrating predictions of an experiment's sensitivity to both continuous and discrete parameters. Using these procedures and a new Bayesian model of the $\beta$-decay spectrum, we assess a high-precision $\beta$-decay experiment's sensitivity to the neutrino mass scale and ordering, for one assumed design scenario. We find that such an experiment could measure the el…
First measurement of the charged current ν¯μ double differential cross section on a water target without pions in the final state
We thank the J-PARC staff for superb accelerator performance. We thank the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC (Grant No. SAPPJ-2014-00031), the NRC and CFI, Canada; the CEA and CNRS/IN2P3, France; the DFG, Germany; the INFN, Italy; the National Science Centre and Ministry of Science and Higher Education, Poland; the RSF (Grant No. 19-12-00325) and the Ministry of Science and Higher Education, Russia; MINECO and ERDF funds, Spain; the SNSF and SERI, Switzerland; the STFC, UK; and the DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the We…
Project 8 Phase III Design Concept
We present a working concept for Phase III of the Project 8 experiment, aiming to achieve a neutrino mass sensitivity of $2~\mathrm{eV}$ ($90~\%$ C.L.) using a large volume of molecular tritium and a phased antenna array. The detection system is discussed in detail.