0000000000309963

AUTHOR

Eweline Pietrowski

showing 4 related works from this author

Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

2009

N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was ob…

N-MethylaspartateEndotheliumBlotting WesternGlutamic AcidStimulationApoptosismedicine.disease_causeBlood–brain barrierBiochemistryReceptors N-Methyl-D-AspartateImmunoenzyme Techniqueschemistry.chemical_compoundMicePhysiology (medical)medicineAnimalsRNA MessengerCells Culturedchemistry.chemical_classificationReactive oxygen speciesChemistrySuperoxideReverse Transcriptase Polymerase Chain ReactionCell biologyOxidative Stressmedicine.anatomical_structurenervous systemBiochemistryBlood-Brain BarrierCerebrovascular CirculationNMDA receptorEndothelium VascularReactive Oxygen SpeciesPeroxynitriteOxidative stressFree radical biologymedicine
researchProduct

Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)H- oxidase derived reactive oxygen species.

2010

T cells are known for their contribution to the inflammatory element of atherosclerosis. Recently, it has been demonstrated that the Th17 derived cytokine IL-17 is involved in the pro-inflammatory response of vascular smooth muscle cells (VSMC). The aim of the present study was to examine whether reactive oxygen species (ROS) might be involved in this context. The effect of IL-17A on ROS generation was examined using the fluorescent dye 2′7′-dichlorodihydrofluorescein (H<sub>2</sub>DCF) in primary murine VSMC. IL-17A induced an increase in H<sub>2</sub>DCF fluorescence in VSMC, and this effect was blocked by the NAD(P)H-oxidase inhibitor apocynin and siRNA targeting …

Vascular smooth musclePhysiologymedicine.medical_treatmentAorta Thoracicmedicine.disease_causep38 Mitogen-Activated Protein KinasesMuscle Smooth Vascularchemistry.chemical_compoundMiceCell MovementmedicineAnimalsEnzyme InhibitorsRNA Small InterferingCells Culturedchemistry.chemical_classificationReactive oxygen speciesNADPH oxidaseMembrane GlycoproteinsbiologyInterleukin-17AcetophenonesNADPH OxidasesCell DifferentiationMolecular biologyMice Inbred C57BLOxidative StressCytokinechemistryBiochemistryNAD(P)H oxidaseNADPH Oxidase 4ApocyninNADPH Oxidase 2cardiovascular systembiology.proteinCytokinesNAD+ kinaseCardiology and Cardiovascular MedicineReactive Oxygen SpeciesOxidative stressJournal of vascular research
researchProduct

Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

2009

Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS)…

1303 BiochemistryEncephalomyelitisOccludin10263 Institute of Experimental ImmunologyBiochemistryMice0302 clinical medicineEnzyme InhibitorsCell Line Transformed0303 health sciencesMice Inbred BALB CNADPH oxidasebiologyTight junctionExperimental autoimmune encephalomyelitisInterleukin-17AzepinesT-Lymphocytes Helper-InducerCell biologyEndothelial stem cellBlood-Brain Barrier1305 BiotechnologyBiotechnologyXanthine OxidaseMyosin light-chain kinaseEncephalomyelitis Autoimmune ExperimentalDown-Regulation610 Medicine & healthNaphthalenes03 medical and health sciences1311 GeneticsOccludinGeneticsmedicine1312 Molecular BiologyAnimalsMolecular BiologyMyosin-Light-Chain KinaseNeuroinflammation030304 developmental biologyEndothelial CellsMembrane ProteinsNADPH Oxidasesmedicine.diseaseMolecular biologyAntibodies NeutralizingOxidative Stressbiology.protein570 Life sciences; biologyReactive Oxygen Species030217 neurology & neurosurgeryFASEB journal : official publication of the Federation of American Societies for Experimental Biolog
researchProduct

Polymer Complexes in Biological Applications

2013

This chapter summarizes the influence of polyelectrolyte topology on biological functions and biomedical applications such as cell uptake, drug delivery, and gene transfection. Polyelectrolytes utilized are spherical structures derived from dendrimers and albumin or cylindrical brushes, all of which are decorated with various polypeptide chains.

chemistry.chemical_classificationMaterials scienceNanotechnologyPolymerHuman serum albuminPolyelectrolyteCaveolae-mediated endocytosisPlasmid dnachemistryDendrimerDrug deliverymedicineOrganic chemistryTopology (chemistry)medicine.drug
researchProduct