0000000000310365

AUTHOR

B. P. Luo

showing 9 related works from this author

Ultrathin Tropical Tropopause Clouds (UTTCs): II. Stabilization mechanisms

2003

Abstract. Mechanisms by which subvisible cirrus clouds (SVCs) might contribute to dehydration close to the tropical tropopause are not well understood. Recently Ultrathin Tropical Tropopause Clouds (UTTCs) with optical depths around 10-4 have been detected in the western Indian ocean. These clouds cover thousands of square kilometers as 200-300 m thick distinct and homogeneous layer just below the tropical tropopause. In their condensed phase UTTCs contain only 1-5% of the total water, and essentially no nitric acid. A new cloud stabilization mechanism is required to explain this small fraction of the condensed water content in the clouds and their small vertical thickness. This work sugges…

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric ScienceSupersaturationWork (thermodynamics)010504 meteorology & atmospheric sciencesChemistry[SDU.OCEAN] Sciences of the Universe [physics]/Ocean AtmosphereEvaporationAtmospheric sciences010502 geochemistry & geophysics01 natural scienceslcsh:QC1-999lcsh:Chemistrylcsh:QD1-999Liquid water content13. Climate actionPhase (matter)Tropical tropopauseddc:550UpwellingCirruslcsh:Physics0105 earth and related environmental sciencesUTTCsultrathin tropical tropospause
researchProduct

Nitric acid trihydrate nucleation and denitrification in the Arctic stratosphere

2014

Abstract. Nitric acid trihydrate (NAT) particles in the polar stratosphere have been shown to be responsible for vertical redistribution of reactive nitrogen (NOy). Recent observations by Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the CALIPSO satellite have been explained in terms of heterogeneous nucleation of NAT on foreign nuclei, revealing this to be an important formation pathway for the NAT particles. In state of the art global- or regional-scale models, heterogeneous NAT nucleation is currently simulated in a very coarse manner using a constant, saturation-independent nucleation rate. Here we present first simulations for the Arctic winter 2009/2010 applying a n…

Atmospheric ScienceDenitrification010504 meteorology & atmospheric sciencesForward scatterNucleationAtmospheric sciences01 natural sciences010309 opticslcsh:Chemistry0103 physical sciencesddc:550Life ScienceStratosphere0105 earth and related environmental sciencesSpectrometerozone holeChemistryAtmosphärische Spurenstoffelcsh:QC1-999Earth sciencesLidarnitric acid trihydratelcsh:QD1-99913. Climate actionPolarParticle sizelcsh:PhysicsArctic stratosphere
researchProduct

Balloon-borne match measurements of mid-latitude cirrus clouds

2013

Abstract. Observations of persistent high supersaturations with respect to ice inside cirrus clouds are challenging our understanding of cloud microphysics and of climate feedback processes in the upper troposphere. Single measurements of a cloudy air mass provide only a snapshot from which the persistence of ice supersaturation cannot be judged. We introduce here the "cirrus match technique" to obtain information of the evolution of clouds and their saturation ratio. The aim of these coordinated balloon soundings is to analyze the same air mass twice. To this end the standard radiosonde equipment is complemented by a frost point hygrometer "SnowWhite" and a particle backscatter detector "C…

Physics::Atmospheric and Oceanic Physics
researchProduct

Ultrathin Tropical Tropopause Clouds (UTTCs) : I. Cloud morphology and occurrence

2003

Abstract. Subvisible cirrus clouds (SVCs) may contribute to dehydration close to the tropical tropopause. The higher and colder SVCs and the larger their ice crystals, the more likely they represent the last efficient point of contact of the gas phase with the ice phase and, hence, the last dehydrating step, before the air enters the stratosphere. The first simultaneous in situ and remote sensing measurements of SVCs were taken during the APE-THESEO campaign in the western Indian ocean in February/March 1999. The observed clouds, termed Ultrathin Tropical Tropopause Clouds (UTTCs), belong to the geometrically and optically thinnest large-scale clouds in the Earth's atmosphere. Individual UT…

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric Science010504 meteorology & atmospheric sciencesIce crystals[SDU.OCEAN] Sciences of the Universe [physics]/Ocean Atmosphere010501 environmental sciencesAtmospheric sciences01 natural scienceslcsh:QC1-999lcsh:ChemistryAtmospherelcsh:QD1-99913. Climate actionClimatologyPhase (matter)Tropical tropopauseMixing ratioddc:550Environmental scienceCirrusTropopauseStratospherelcsh:Physics0105 earth and related environmental sciences
researchProduct

Balloon-borne match measurements of midlatitude cirrus clouds

2014

Observations of high supersaturations with respect to ice inside cirrus clouds with high ice water content (> 0.01 g kg−1) and high crystal number densities (> 1 cm−3) are challenging our understanding of cloud microphysics and of climate feedback processes in the upper troposphere. However, single measurements of a cloudy air mass provide only a snapshot from which the persistence of ice supersaturation cannot be judged. We introduce here the "cirrus match technique" to obtain information about the evolution of clouds and their saturation ratio. The aim of these coordinated balloon soundings is to analyze the same air mass twice. To this end the standard radiosonde equipment is complemente…

Atmospheric ScienceObservational errorMeteorologyHygrometerAtmospheric scienceslcsh:QC1-999law.inventionAerosolTropospherelcsh:Chemistrylcsh:QD1-999lawMiddle latitudesRadiosondeIce nucleusddc:550Environmental scienceCirruslcsh:PhysicsPhysics::Atmospheric and Oceanic Physics
researchProduct

Dehydration potential of ultrathin clouds at the tropical tropopause

2003

[1] We report on the first simultaneous in situ and remote measurements of subvisible cirrus in the uppermost tropical troposphere. The observed cirrus, called UTTCs ( ultrathin tropical tropopause clouds), are the geometrically (200-300 m) and optically (t approximate to 10(-4)) thinnest large-scale clouds ever sampled (approximate to10(5) km(2)). UTTCs consist of only a few ice particles per liter with mean radius approximate to5 mum, containing only 1-5 % of the total water. Yet, brief adiabatic cooling events only 1-2 K below mean ambient temperature destabilize UTTCs, leading to large sedimenting particles (r approximate to 25 mm). Due to their extreme altitude above 17 km and low part…

Ice cloudMaterials scienceIce crystalsparticle micro-physicsdehydrationtropical tropopauseRadiusAtmospheric sciencesJTroposphereGeophysicsAltitudeddc:550General Earth and Planetary SciencesCirrussubvisible cirrus cloudsTropopauseStratosphere
researchProduct

Nitric Acid Trihydrate (NAT) formation at low NAT supersaturation in Polar Stratospheric Clouds (PSCs)

2005

International audience; A PSC was detected on 6 February 2003 in the Arctic stratosphere by in-situ measurements onboard the high-altitude research aircraft Geophysica. Low number densities (~10-4cm-3) of small nitric acid (HNO3) containing particles (dTNAT, these NAT particles have the potential to grow further and to remove HNO3 from the stratosphere, thereby enhancing polar ozone loss. Interestingly, the NAT particles formed in less than a day at temperatures just slightly below TNAT (T>TNAT-3.1K). This unique measurement of PSC formation at extremely low NAT saturation ratios (SNAT?10) constrains current NAT nucleation theories. We suggest, that the NAT particles have formed heterogeneo…

Atmospheric Science010504 meteorology & atmospheric sciencesAnalytical chemistryNucleation010402 general chemistryAtmospheric sciences01 natural scienceslcsh:Chemistrychemistry.chemical_compoundNitric acidStratosphere0105 earth and related environmental sciences[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereSupersaturationChemistrylcsh:QC1-9990104 chemical sciencesThe arcticozonelcsh:QD1-99913. Climate actionNatpolar stratospheric cloud (PSC)PolarSaturation (chemistry)nitric acid trihydrate (NAT)lcsh:Physics
researchProduct

Unprecedented evidence for deep convection hydrating the tropical stratosphere

2008

[1] We report on in situ and remote sensing measurements of ice particles in the tropical stratosphere found during the Geophysica campaigns TROCCINOX and SCOUT-O3. We show that the deep convective systems penetrated the stratosphere and deposited ice particles at altitudes reaching 420 K potential temperature. These convective events had a hydrating effect on the lower tropical stratosphere due to evaporation of the ice particles. In contrast, there were no signs of convectively induced dehydration in the stratosphere.

ConvectionDeep convectionGeophysicsAltitudeEvaporationGeneral Earth and Planetary SciencesPotential temperatureAtmospheric sciencesStratosphereGeologyGeophysical Research Letters
researchProduct

Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere

2013

[1] In the absence of tangible progress in reducing greenhouse gas emissions, the implementation of solar radiation management has been suggested as measure to stop global warming. Here we investigate the impacts on northern midlatitude cirrus from continuous SO2emissions of 2–10 Mt/a in the tropical stratosphere. Transport of geoengineering aerosols into the troposphere was calculated along trajectories based on ERA Interim reanalyses using ozone concentrations to quantify the degree of mixing of stratospheric and tropospheric air termed “troposphericity”. Modeled size distributions of the geoengineered H2SO4-H2O droplets have been fed into a cirrus box model with spectral microphysics. Th…

Cloud forcingAtmospheric ScienceMicrophysicsRadiative forcingAtmospheric sciencesTroposphereGeophysicsSpace and Planetary ScienceSolar radiation managementClimatologyEarth and Planetary Sciences (miscellaneous)Radiative transferEnvironmental scienceCirrusStratosphereJournal of Geophysical Research: Atmospheres
researchProduct