6533b873fe1ef96bd12d4baa

RESEARCH PRODUCT

Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere

B. P. LuoUlrike LohmannPeter SpichtingerDebra K. WeisensteinThomas PeterA. CirisanHeini Wernli

subject

Cloud forcingAtmospheric ScienceMicrophysicsRadiative forcingAtmospheric sciencesTroposphereGeophysicsSpace and Planetary ScienceSolar radiation managementClimatologyEarth and Planetary Sciences (miscellaneous)Radiative transferEnvironmental scienceCirrusStratosphere

description

[1] In the absence of tangible progress in reducing greenhouse gas emissions, the implementation of solar radiation management has been suggested as measure to stop global warming. Here we investigate the impacts on northern midlatitude cirrus from continuous SO2emissions of 2–10 Mt/a in the tropical stratosphere. Transport of geoengineering aerosols into the troposphere was calculated along trajectories based on ERA Interim reanalyses using ozone concentrations to quantify the degree of mixing of stratospheric and tropospheric air termed “troposphericity”. Modeled size distributions of the geoengineered H2SO4-H2O droplets have been fed into a cirrus box model with spectral microphysics. The geoengineering is predicted to cause changes in ice number density by up to 50%, depending on troposphericity and cooling rate. We estimate the resulting cloud radiative effects from a radiation transfer model. Complex interplay between the few large stratospheric and many small tropospheric H2SO4-H2O droplets gives rise to partly counteracting radiative effects: local increases in cloud radiative forcing up to +2 W/m2for low troposphericities and slow cooling rates, and decreases up to −7.5 W/m2for high troposphericities and fast cooling rates. The resulting mean impact on the northern midlatitudes by changes in cirrus is predicted to be low, namely <1% of the intended radiative forcing by the stratospheric aerosols. This suggests that stratospheric sulphate geoengineering is unlikely to have large microphysical effects on the mean cirrus radiative forcing. However, this study disregards feedbacks, such as temperature and humidity changes in the upper troposphere, which must be examined separately.

https://doi.org/10.1002/jgrd.50388