0000000000310366

AUTHOR

Kenneth S. Carslaw

Ultrathin Tropical Tropopause Clouds (UTTCs): II. Stabilization mechanisms

Abstract. Mechanisms by which subvisible cirrus clouds (SVCs) might contribute to dehydration close to the tropical tropopause are not well understood. Recently Ultrathin Tropical Tropopause Clouds (UTTCs) with optical depths around 10-4 have been detected in the western Indian ocean. These clouds cover thousands of square kilometers as 200-300 m thick distinct and homogeneous layer just below the tropical tropopause. In their condensed phase UTTCs contain only 1-5% of the total water, and essentially no nitric acid. A new cloud stabilization mechanism is required to explain this small fraction of the condensed water content in the clouds and their small vertical thickness. This work sugges…

research product

Model emulation to understand the joint effects of ice-nucleating particles and secondary ice production on deep convective anvil cirrus

Abstract. Ice crystal formation in the mixed-phase region of deep convective clouds can affect the properties of climatically important convectively generated anvil clouds. Small ice crystals in the mixed-phase cloud region can be formed by heterogeneous ice nucleation by ice-nucleating particles (INP) and secondary ice production (SIP) by, for example, the Hallett-Mossop process. We quantify the effects of INP number concentration, the temperature dependence of the INP number concentration at mixedphase temperatures, and the Hallett-Mossop splinter production efficiency on the anvil of an idealised deep convective cloud using a Latin hypercube sampling method, which allows optimal coverage…

research product

A multi-model assessment of the efficacy of sea spray geoengineering

Abstract. Artificially increasing the albedo of marine clouds by the mechanical emission of sea spray aerosol has been proposed as a geoengineering technique to slow the warming caused by anthropogenic greenhouse gases. A previous global model study found that only modest increases and sometimes even decreases in cloud drop number (CDN) concentrations would result from plausible emission scenarios. Here we extend that work to examine the conditions under which decreases in CDN can occur, and use three independent global models to quantify maximum achievable CDN changes. We find that decreases in CDN can occur when at least three of the following conditions are met: the injected particle num…

research product

General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol research from nano to global scales

In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan…

research product

The temperature dependence of ice-nucleating particle concentrations affects the radiative properties of tropical convective cloud systems

Convective cloud systems in the maritime tropics play a critical role in global climate, but accurately representing aerosol interactions within these clouds persists as a major challenge for weather and climate modelling. We quantify the effect of ice-nucleating particles (INPs) on the radiative properties of a complex tropical Atlantic deep convective cloud field using a regional model with an advanced double-moment microphysics scheme. Our results show that the domain-mean daylight outgoing radiation varies by up to 18 W m−2 depending on the chosen INP parameterisation. The key distinction between different INP parameterisations is the temperature dependence of ice formation, which alter…

research product

A multi-model assessment of the impact of sea spray geoengineering on cloud droplet number

Artificially increasing the albedo of marine boundary layer clouds by the mechanical emission of sea spray aerosol has been proposed as a geoengineering technique to slow the warming caused by anthropogenic greenhouse gases. A previous global model study (Korhonen et al., 2010) found that only modest increases (< 20%) and sometimes even decreases in cloud drop number (CDN) concentrations would result from emission scenarios calculated using a windspeed dependent geoengineering flux parameterisation. Here we extend that work to examine the conditions under which decreases in CDN can occur, and use three independent global models to quantify maximum achievable CDN changes. We find that dec…

research product

Ultrathin Tropical Tropopause Clouds (UTTCs) : I. Cloud morphology and occurrence

Abstract. Subvisible cirrus clouds (SVCs) may contribute to dehydration close to the tropical tropopause. The higher and colder SVCs and the larger their ice crystals, the more likely they represent the last efficient point of contact of the gas phase with the ice phase and, hence, the last dehydrating step, before the air enters the stratosphere. The first simultaneous in situ and remote sensing measurements of SVCs were taken during the APE-THESEO campaign in the western Indian ocean in February/March 1999. The observed clouds, termed Ultrathin Tropical Tropopause Clouds (UTTCs), belong to the geometrically and optically thinnest large-scale clouds in the Earth's atmosphere. Individual UT…

research product

Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from…

research product

Dehydration potential of ultrathin clouds at the tropical tropopause

[1] We report on the first simultaneous in situ and remote measurements of subvisible cirrus in the uppermost tropical troposphere. The observed cirrus, called UTTCs ( ultrathin tropical tropopause clouds), are the geometrically (200-300 m) and optically (t approximate to 10(-4)) thinnest large-scale clouds ever sampled (approximate to10(5) km(2)). UTTCs consist of only a few ice particles per liter with mean radius approximate to5 mum, containing only 1-5 % of the total water. Yet, brief adiabatic cooling events only 1-2 K below mean ambient temperature destabilize UTTCs, leading to large sedimenting particles (r approximate to 25 mm). Due to their extreme altitude above 17 km and low part…

research product

The AeroCom evaluation and intercomparison of organic aerosol in global models

This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and op…

research product

The nature of ice-nucleating particles affects the radiative properties of tropical convective cloud systems

Abstract. Convective cloud systems in the maritime tropics play a critical role in global climate, but accurately representing aerosol interactions within these clouds persists as a major challenge for weather and climate modelling. We quantify the effect of ice-nucleating particles (INP) on the radiative properties of a complex Tropical Atlantic deep convective cloud field using a regional model with an advanced double-moment microphysics scheme. Our results show that the domain-mean daylight outgoing radiation varies by up to 18 W m−2 depending on the bio- and physico-chemical properties of INP. The key distinction between different INPs is the temperature dependence of ice formation, whi…

research product