0000000000311449

AUTHOR

Franco Ghelfi

0000-0001-7759-7077

showing 8 related works from this author

Acid- and Base-Catalysis in the Mononuclear Rearrangement of Some (Z)-arylhydrazones of 5-Amino-3-benzoyl-1,2,4-oxadiazole in Toluene: Effect of Subs…

2011

The reaction rates for the rearrangement of eleven (Z)-arylhydrazones of 5-amino-3-benzoyl-1,2,4-oxadiazole 3a-k into the relevant (2-aryl-5-phenyl-2H-1, 2,3-triazol-4-yl)ureas 4a-k in the presence of trichloroacetic acid or of piperidine have been determined in toluene at 313.1 K. The results have been related to the effect of the aryl substituent by using Hammett and/or Ingold-Yukawa-Tsuno correlations and have been compared with those previously collected in a protic polar solvent (dioxane/water) as well as with those on the analogous rearrangement of the corresponding (Z)-arylhydrazones of 3-benzoyl-5-phenyl-1,2,4-oxadiazole 1a-k in benzene. Some light can thus be shed on the general di…

SubstituentOxadiazoleAlkaliesMedicinal chemistryCatalysisDioxanesStructure-Activity RelationshipAcid catalysischemistry.chemical_compoundPiperidinesUreaOrganic chemistryAminesTrichloroacetic AcidBenzeneBiological ProductsOxadiazolesMolecular StructureArylMRH acid- and base-catalysis kinetic measurementsOrganic ChemistryHydrazonesTemperatureWaterSettore CHIM/06 - Chimica OrganicaTolueneSolventKineticschemistryMononuclear rearrangements of heterocycles; (Z)-Arylhydrazones; acid catalysis; base catalysis.PiperidineHydrophobic and Hydrophilic InteractionsToluene
researchProduct

Apolar versus polar solvents: a comparison of the strength of some organic acids against different bases in toluene and in water

2010

The constants of ion-pair formation with 3-nitroaniline (3NO(2)A) for eight halogenoacetic acids (HAAs, 3a-h: TFA, TCA, TBA, DFA, DCA, DBA, MCA, and MBA), and five 2,2-dichloroalkanoic acids containing 3-8 carbon atoms (HAs, 5a-e: DCPA, DCBA, DCMBA, DCVA, and DCOA) have been determined in TOL at 298.1 K. The results obtained brought to evidence for HAAs the formation of ion-pairs with two different stoichiometries (base-acid, 1:1 or 1:2), while in contrast the HAs furnish only the 1:1 pairs. The different steric and electronic requirements of HAAs and HAs seem to be responsible for such an unlikely behavior. At the same time, the acid-catalyzed MRH of the (Z)-phenylhydrazone of 5-amino-3-be…

nitroanilinechemistry.chemical_classificationSteric effectsBase (chemistry)reazione di Boulton-Katritzskyacidi dicloroalcanoicichemistry.chemical_elementSettore CHIM/06 - Chimica Organicaacidi alogenoaceticiMedicinal chemistryTolueneMRH kinetic ion pairschemistry.chemical_compoundchemistryUreaPolarOrganic chemistryPhysical and Theoretical ChemistryCarbonreazione di Boulton-Katritzsky; nitroaniline; acidi alogenoacetici; acidi dicloroalcanoiciStoichiometry
researchProduct

CuCl catalyzed radical cyclisation of N-alpha-perchloroacyl-ketene-N,S-acetals: a new way to prepare disubstituted maleic anhydrides

2012

The discovery that cycloalkanes can form thermomorphic systems with typical polar organic solvents has led to the development of less-polar electrolyte solutions. Their mixing and separation can be regulated reversibly at a moderate temperature range. The phase switching temperature can be controlled by changing the solvent compositions. While biphasic conditions are maintained below the phase switching temperature, conductive monophasic conditions as less-polar electrolyte solutions are obtained above the phase switching temperature. After the electrochemical transformations, biphasic conditions are reconstructed below the phase switching temperature, facilitating the separation of cycloal…

S-acetals alpha-Perchloroenamides Copper(I) chloride 5-endo Radical cyclization Maleic anhydridesCyclic compoundOrganic ChemistryAcetalKeteneMethyl radicalMaleic anhydrideSettore CHIM/06 - Chimica OrganicaBiochemistryRadical cyclizationMedicinal chemistryCyclic ketene-N; S-acetals alpha-Perchloroenamides Copper(I) chloride 5-endo Radical cyclization Maleic anhydrideschemistry.chemical_compoundchemistryCyclic ketene-N; S-acetals; alpha-perchloroenamides; Copper(I)chloride; 5-endo radical cyclization; maleic anhydridesDrug DiscoveryCyclic ketene-NS-acetals a-perchloroenamides copper(I) chloride maleic anhydridesCyclic ketene-NImideMaleimide
researchProduct

On the rearrangement of some Z-arylhydrazones of 3-benzoyl-5-phenylisoxazoles into 2-aryl-4-phenacyl-2H-1,2,3-triazoles: a kinetic study of the subst…

2015

Abstract The rearrangement of eight new Z -arylhydrazones of 3-benzoyl-5-phenylisoxazoles ( 3d – k ) into the relevant 2-aryl-4-phenacyl-2 H -1,2,3-triazoles ( 4d – k ) in dioxane/water solution at different proton concentrations has been quantitatively studied in a wide temperature range (293–333 K). The data collected together with some our previous ones on compounds 3a – c have allowed a deep study of the substituent effects on the course of the rearrangement, thus increasing our knowledge on the Boulton–Katritzky reactions in isoxazole derivatives and on the temperature effects on free energy relationships.

ProtonArylOrganic ChemistryMononuclear rearrangement of heterocycles substituent effect phenylisoxazolesSubstituentSettore CHIM/06 - Chimica OrganicaAtmospheric temperature rangePhenacylKinetic energyBiochemistryMedicinal chemistrychemistry.chemical_compoundchemistryDrug DiscoveryOrganic chemistryIsoxazoleBoulton-Katritzky reactions Isoxazoles Triazoles Ring-into-ring conversion Effect of substituents Free energy relationships
researchProduct

A green way to gamma-lactams through a copper catalyzed ARGET-ATRC in ethanol and in the presence of ascorbic acid

2011

Abstract A ‘green’ ARGET-ATRC, for the CuCl[PMDETA] catalysed cyclo -isomerization of N -allyl-α-polychloroamides to γ-lactams is described. The process works efficiently (yields 78–96%), uses a bio-solvent, as ethanol, and exploits the reducing feature of ascorbic acid to limit, at a low level (2–4%), the amount of catalyst. To preserve the efficacy of the catalytic cycle, addition of Na 2 CO 3 is essential, which quenches the HCl released during the CuCl[PMDETA] regeneration step. Profitable features of the process are: mild reaction temperatures (25–37 °C), relatively short reaction times (usually 5 h) and low solvent volumes (2 mmol of substrate/mL of ethanol). The method, upon stoichio…

EthanolOrganic ChemistrySubstrate (chemistry)Settore CHIM/06 - Chimica OrganicaAscorbic acidHalocompoundsATRCg-LactamsCuClAscorbic acidBiochemistryMedicinal chemistryradical cyclizationCatalysisSolventchemistry.chemical_compoundCatalytic cyclechemistrylactamDrug DiscoveryOrganic chemistryascorbic acidlactam; ascorbic acid; radical cyclizationIsomerizationHalocompounds; ATRC; gamma-lactams; CuCl; ascorbic acid.Stoichiometry
researchProduct

Breakthrough in the α-Perchlorination of Acyl Chlorides

2012

The preparation of -perchloroacyl chlorides, from reaction of the corresponding unfunctionalized acyl halides with chlorine, was efficiently achieved under base-catalysis, using a tetraalkylammonium chloride as catalyst. The process is solvent-free and the procedure is easy, inexpensive, and suitable for scale-up.

acid chlorideacyl chlorides halogenation chlorine base catalysisOrganic Chemistry2Halogenationchemistry.chemical_elementtetralkylammonium chlorideSettore CHIM/06 - Chimica Organicaacyl chloridesacid chloride perchlorination tetralkylammonium chlorideCatalysisAcylationacyl chlorides halogenation chlorine base catalysis 2; 2-dichloroacyl chlorideschemistry2-dichloroacyl chlorideshalogenationchlorineChlorineOrganic chemistryperchlorinationbase catalysis
researchProduct

The Boulton-Katritzky Reaction: A Kinetic Study of the Effect of 5-Nitrogen Substituents on the Rearrangement of Some (Z)-Phenylhydrazones of 3-Benzo…

2014

The kinetics of the ring-into-ring conversion of some new (Z)-phenylhydrazones of 3-benzoyl-1,2,4-oxadiazole containing different nitrogen-substituents at C-5 (3b–d; X = NHMe, NMe2, and NHCOMe) into the relevant triazoles 4b–d have been examined in a wide range of pS+ (0.1–11.9) in 1:1 (v/v) dioxane/water solution. The obtained results have been compared with previous data concerning the (Z)-phenylhydrazone of 5-amino-3-benzoyl-1,2,4-oxadiazole (3a; X = NH2). All of the studied (Z)-phenylhydrazones rearrange through three different pathways (specific acid-catalysed, uncatalysed and general base-catalysed). The different effects of the substituents on the course of the rearrangement in the t…

chemistryStereochemistryOrganic ChemistryKineticschemistry.chemical_elementPhysical and Theoretical ChemistryKinetic energyMedicinal chemistryIsomerizationNitrogenEuropean Journal of Organic Chemistry
researchProduct

The Boulton-Katritzky Reaction: A Kinetic Study of the Effect of 5-Nitrogen Substituents on the Rearrangement of Some (Z)-phenylhydrazones of 3-Benzo…

2014

The kinetics of the ring-into-ring conversion of some new (Z)-phenylhydrazones of 3-benzoyl-1,2,4-oxadiazole containing different nitrogen-substituents at C-5 (3b-d; X = NHMe, NMe2, and NHCOMe) into the relevant triazoles 4b-d have been examined in a wide range of pS+ (0.1-11.9) in 1:1 (v/v) dioxane/water solution. The obtained results have been compared with previous data concerning the (Z)-phenyl-hydrazone of 5-amino-3-benzoyl-1,2,4-oxadiazole (3a; X = NH2). All of the studied (Z)-phenylhydrazones rearrange through three different pathways (specific acid-catalysed, uncatalysed and general base-catalysed). The different effects of the substituents on the course of the rearrangement in the …

hydrazoneKinetics Rearrangement Heterocycles Hydrazones IsomerizationrearrangementkineticSettore CHIM/06 - Chimica OrganicaKinetics / Rearrangement / Heterocycles / Hydrazones / Isomerizationisomerizationheterocycle
researchProduct