0000000000313532

AUTHOR

Montaruli26 Teresa

0000-0001-5014-2152

Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in th…

research product

Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data

A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV - PeV range at the level of $10^{-8}\, \mathrm{GeV}\, \mathrm{cm}^{-2}\, \mathrm{s}^{-1}\, \mathrm{sr}^{-1}$ per flavor and reject a purely atmospheric explanation for the combined 3-year data at $5.7 \sigma$. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotrop…

research product

Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore

We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ∼5 GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/Eν as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δm322=2.31…

research product

A Search for a Diffuse Flux of Astrophysical Muon Neutrinos with the IceCube 40-String Detector

The IceCube Neutrino Observatory is a 1 km$^{3}$ detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A to…

research product

An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts

Gamma-Ray Bursts (GRBs) have been proposed as a leading candidate for acceleration of ultra high-energy cosmic rays, which would be accompanied by emission of TeV neutrinos produced in proton-photon interactions during acceleration in the GRB fireball. Two analyses using data from two years of the IceCube detector produced no evidence for this neutrino emission, placing strong constraints on models of neutrino and cosmic-ray production in these sources.

research product

Search for sterile neutrino mixing using three years of IceCube DeepCore data

Physical review / D 95(11), 112002(2017). doi:10.1103/PhysRevD.95.112002

research product

Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory

Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies above ~500 GeV at the surface, which provides an efficient veto system for hadronic air showers with energies above 1 PeV. One year of data from the 40-string IceCube configuration was used to perform a search for point sources and a Galactic diffuse signal. No sources were found, resulting in a 90% C.L. upper limit on the ratio of gamma rays to cosmic rays of 1.2 x 10^(-3)for the flux coming from …

research product

Observation of the cosmic-ray shadow of the Moon with IceCube

We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this "Moon shadow" is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (> 6 sigma) in both detector config…

research product

Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube

The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV--PeV) neutrinos produced in distant astrophysical objects. A search for $\gtrsim 100$~TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1~TeV and 1~PeV in 641 days of data taken from 2010--2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far bel…

research product

Search for neutrino-induced particle showers with IceCube-40

We report on the search for neutrino-induced particle-showers, so-called cascades, in the IceCube-40 detector. The data for this search was collected between April 2008 and May 2009 when the first 40 IceCube strings were deployed and operational. Three complementary searches were performed, each optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical neutrino flux. The analysis with an intermediate threshold of 25 TeV lead to the observation of…

research product

Search for dark matter from the Galactic halo with the IceCube neutrino telescope

Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of ⟨σAv⟩≃10-22 cm3 s-1 for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum.

research product

IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae ( Corrigendum )

Keywords: neutrinos ; supernovae: general ; instrumentation: detectors ; errata ; addenda Reference EPFL-ARTICLE-198916doi:10.1051/0004-6361/201117810eView record in Web of Science Record created on 2014-05-19, modified on 2017-05-12

research product

Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data

We report on a search for extremely-high energy neutrinos with energies greater than $10^6$ GeV using the data taken with the IceCube detector at the South Pole. The data was collected between April 2008 and May 2009 with the half completed IceCube array. The absence of signal candidate events in the sample of 333.5 days of livetime significantly improves model independent limit from previous searches and allows to place a limit on the diffuse flux of cosmic neutrinos with an $E^{-2}$ spectrum in the energy range $2.0 \times 10^{6}$ $-$ $6.3 \times 10^{9}$ GeV to a level of $E^2 \phi \leq 3.6 \times 10^{-8}$ ${\rm GeV cm^{-2} sec^{-1}sr^{-1}}$.

research product

Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbe…

research product

Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors

A search for an excess of muon-neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of livetime between 2001 and 2006 and 149 days of livetime collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total livetime of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding …

research product

Measurement of the AtmosphericνeSpectrum with IceCube

We present a measurement of the atmospheric $\nu_e$ spectrum at energies between 0.1 TeV and 100 TeV using data from the first year of the complete IceCube detector. Atmospheric $\nu_e$ originate mainly from the decays of kaons produced in cosmic-ray air showers. This analysis selects 1078 fully contained events in 332 days of livetime, then identifies those consistent with particle showers. A likelihood analysis with improved event selection extends our previous measurement of the conventional $\nu_e$ fluxes to higher energies. The data constrain the conventional $\nu_e$ flux to be $1.3^{+0.4}_{-0.3}$ times a baseline prediction from a Honda's calculation, including the knee of the cosmic-…

research product

South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy

AbstractThe IceCube Neutrino Observatory and its prototype, AMANDA, were built in South Pole ice, using powerful hot-water drills to cleanly bore>100 holes to depths up to 2500 m. The construction of these particle physics detectors provided a unique opportunity to examine the deep ice sheet using a variety of novel techniques. We made high-resolution particulate profiles with a laser dust logger in eight of the boreholes during detector commissioning between 2004 and 2010. The South Pole laser logs are among the most clearly resolved measurements of Antarctic dust strata during the last glacial period and can be used to reconstruct paleoclimate records in exceptional detail. Here we use…

research product

First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV-PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

research product

Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube

A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18,000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject mis-reconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than one percent. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric muon ne…

research product

Search for ultrahigh-energy tau neutrinos with IceCube

The first dedicated search for ultrahigh-energy (UHE) tau neutrinos of astrophysical origin was performed using the IceCube detector in its 22-string configuration with an instrumented volume of roughly 0.25  km3. The search also had sensitivity to UHE electron and muon neutrinos. After application of all selection criteria to approximately 200 live-days of data, we expect a background of 0.60±0.19(stat)+0.56−0.58(syst) events and observe three events, which after inspection, emerge as being compatible with background but are kept in the final sample. Therefore, we set an upper limit on neutrinos of all flavors from UHE astrophysical sources at 90% C.L. of E2νΦ90(νx)<16.3×10−8  GeV cm−2…

research product

Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscilla…

research product

Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based on the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40K and the bioluminescence in the sea water. The 40K background is used to calibrate the efficiency of the photo-multiplier tubes.

research product

Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector

We have performed a search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope. For the first time, the DeepCore sub-array is included in the analysis, lowering the energy threshold and extending the search to the austral summer. The 317 days of data collected between June 2010 and May 2011 are consistent with the expected background from atmospheric muons and neutrinos. Upper limits are therefore set on the dark matter annihilation rate, with conversions to limits on spin-dependent and spin-independent WIMP-proton cross-sections for WIMP masses in the range 20 - 5000 GeV. These are the most stringent s…

research product