0000000000313589

AUTHOR

Stuart L. Shapiro

Jet launching from binary neutron star mergers: Incorporating neutrino transport and magnetic fields

We perform general relativistic, magnetohydrodynamic (GRMHD) simulations of merging binary neutron stars incorporating neutrino transport and magnetic fields. Our new radiative transport module for neutrinos adopts a general relativistic, truncated-moment (M1) formalism. The binaries consist of two identical, irrotational stars modeled by the SLy nuclear equation of state (EOS). They are initially in quasicircular orbit and threaded with a poloidal magnetic field that extends from the stellar interior into the exterior, as in typical pulsars. We insert neutrino processes shortly after the merger and focus on the role of neutrinos in launching a jet following the collapse of the hypermassive…

research product

Multimessenger Binary Mergers Containing Neutron Stars: Gravitational Waves, Jets, and γ-Ray Bursts

Neutron stars (NSs) are extraordinary not only because they are the densest form of matter in the visible Universe but also because they can generate magnetic fields ten orders of magnitude larger than those currently constructed on earth. The combination of extreme gravity with the enormous electromagnetic (EM) fields gives rise to spectacular phenomena like those observed on August 2017 with the merger of a binary neutron star system, an event that generated a gravitational wave (GW) signal, a short γ-ray burst (sGRB), and a kilonova. This event serves as the highlight so far of the era of multimessenger astronomy. In this review, we present the current state of our theoretical understand…

research product

Locating ergostar models in parameter space

Recently, we have shown that dynamically stable ergostar solutions (equilibrium neutron stars that contain an ergoregion) with a compressible and causal equation of state exist [A. Tsokaros, M. Ruiz, L. Sun, S. L. Shapiro, and K. Ury\=u, Phys. Rev. Lett. 123, 231103 (2019)]. These stars are hypermassive, differentially rotating, and highly compact. In this work, we make a systematic study of equilibrium models in order to locate the position of ergostars in parameter space. We adopt four equations of state that differ in the matching density of a maximally stiff core. By constructing a large number of models both with uniform and differential rotation of different degrees, we identify the p…

research product

General Relativistic Magnetohydrodynamic Simulations of Accretion Disks Around Tilted Binary Black Holes of Unequal Mass

We perform general relativistic simulations of magnetized, accreting disks onto spinning binary black holes (BHBHs) with different mass ratios (MRs). The magnitude of the individual BH spins are all $\chi= 0.26$ and lie either along the initial orbital plane or $45^\circ$ above it. We evolve these systems throughout the inspiral, merger and postmerger phases to identify the impact of the BH spins and the MR on any jet and their electromagnetic (EM) signatures. We find that incipient jets are launched from both BHs regardless of the MR and along the spin directions as long as the force-free parameter $B^2/(8\,\pi\rho_0)$ in the funnel and above their poles is larger than one. At large distan…

research product

Jet launching from merging magnetized binary neutron stars with realistic equations of state

We perform general relativistic, magnetohydrodynamic (GRMHD) simulations of binary neutron stars in quasi-circular orbit that merge and undergo delayed or prompt collapse to a black hole (BH). The stars are irrotational and modeled using an SLy or an H4 nuclear equation of state. To assess the impact of the initial magnetic field configuration on jet launching, we endow the stars with a purely poloidal magnetic field that is initially unimportant dynamically and is either confined to the stellar interior or extends from the interior into the exterior as in typical pulsars. Consistent with our previous results, we find that only the BH + disk remnants originating from binaries that form hype…

research product

Magnetohydrodynamic Simulations of Binary Neutron Star Mergers in General Relativity: Effects of Magnetic Field Orientation on Jet Launching

Binary neutron star (NSNS) mergers can be sources of gravitational waves coincident with electromagnetic counterpart emission. To solidify their role as multimessenger sources, we present fully 3D, general relativistic, magnetohydrodynamic simulations of spinning NSNSs initially on quasicircular orbits that merge and undergo delayed collapse to a black hole (BH). The NSNSs consist of two identical stars modeled as $\Gamma=2$ polytropes with spin $\chi_{NS}= 0.36$ aligned along the direction of the total orbital angular momentum $L$. Each star is initially threaded by a dynamical unimportant interior dipole B-field. The field is extended into the exterior where a nearly force-free magnetosph…

research product

Dynamically Stable Ergostars Exist: General Relativistic Models and Simulations

We construct the first dynamically stable ergostars (equilibrium neutron stars that contain an ergoregion) for a compressible, causal equation of state. We demonstrate their stability by evolving both strict and perturbed equilibrium configurations in full general relativity for over a hundred dynamical timescales ($\gtrsim 30$ rotational periods) and observing their stationary behavior. This stability is in contrast to earlier models which prove radially unstable to collapse. Our solutions are highly differentially rotating hypermassive neutron stars with a corresponding spherical compaction of $C=0.3$. Such ergostars can provide new insights into the geometry of spacetimes around highly c…

research product

Relativistic simulations of black hole-neutron star coalescence: the jet emerges

We perform magnetohydrodynamic simulations in full general relativity (GRMHD) of a binary black hole-neutron star on a quasicircular orbit that undergoes merger. The binary mass ratio is 3:1, the black hole initial spin parameter $a/m=0.75$ ($m$ is the black hole Christodoulou mass) aligned with the orbital angular momentum, and the neutron star is an irrotational $\Gamma=2$ polytrope. About two orbits prior to merger (at time $t=t_B$), we seed the neutron star with a dynamically weak interior dipole magnetic field that extends into the stellar exterior. At $t=t_B$ the exterior has a low-density atmosphere with constant plasma parameter $\beta\equiv P_{\rm gas}/P_{\rm mag}$. Varying $\beta$…

research product

Self-gravitating disks around rapidly spinning, tilted black holes: General relativistic simulations

We perform general relativistic simulations of self-gravitating black hole-disks in which the spin of the black hole is significantly tilted ($45^\circ$ and $90^\circ$) with respect to the angular momentum of the disk and the disk-to-black hole mass ratio is $16\%-28\%$. The black holes are rapidly spinning with dimensionless spins up to $\sim 0.97$. These are the first self-consistent hydrodynamic simulations of such systems, which can be prime sources for multimessenger astronomy. In particular tilted black hole-disk systems lead to: i) black hole precession; ii) disk precession and warping around the black hole; iii) earlier saturation of the Papaloizou-Pringle instability compared to al…

research product

Magnetic Ergostars, Jet Formation and Gamma-Ray Bursts: Ergoregions versus Horizons

We perform the first fully general relativistic, magnetohydrodynamic simulations of dynamically stable hypermassive neutron stars with and without ergoregions to assess the impact of ergoregions on launching magnetically--driven outflows. The hypermassive neutron stars are modeled by a compressible and causal equation of state and are initially endowed with a dipolar magnetic field extending from the stellar interior into its exterior. We find that, after a few Alfv\'en times, magnetic field lines in the ergostar (star that contains ergoregions) and the normal star have been tightly wound in both cases into a helical funnel within which matter begins to flow outward. The maximum Lorentz fac…

research product

Gravitational Waves from Disks Around Spinning Black Holes: Simulations in Full General Relativity

We present fully general-relativistic numerical evolutions of self-gravitating tori around spinning black holes with dimensionless spin $a/M = 0.7$ parallel or anti-parallel to the disk angular momentum. The initial disks are unstable to the hydrodynamic Papaloizou-Pringle Instability which causes them to grow persistent orbiting matter clumps. The effect of black hole spin on the growth and saturation of the instability is assessed. We find that the instability behaves similarly to prior simulations with non-spinning black holes, with a shift in frequency due to spin-induced changes in disk orbital period. Copious gravitational waves are generated by these systems, and we analyze their det…

research product

Accretion disks around binary black holes of unequal mass: General relativistic MHD simulations of postdecoupling and merger

We report results from simulations in general relativity of magnetized disks accreting onto merging black hole binaries, starting from relaxed disk initial data. The simulations feature an effective, rapid radiative cooling scheme as a limiting case of future treatments with radiative transfer. Here we evolve the systems after binary-disk decoupling through inspiral and merger, and analyze the dependence on the binary mass ratio with $q\ensuremath{\equiv}{m}_{\text{bh}}/{M}_{\mathrm{BH}}=1,1/2$, and $1/4$. We find that the luminosity associated with local cooling is larger than the luminosity associated with matter kinetic outflows, while the electromagnetic (Poynting) luminosity associated…

research product

Disks Around Merging Binary Black Holes: From GW150914 to Supermassive Black Holes

We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning black hole binaries with mass ratio 36:29. We survey different disk models which differ in their scale height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model. Scaling our simulations to LIGO GW150914 we find that such systems could explain possible gravitational wave and electromagnetic counterparts such as the Fermi GBM hard X-ray signal reported 0.4s after GW150915 ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties such as accretion rate periodicities, the emergence of je…

research product

Magnetorotational Collapse of Supermassive Stars: Black Hole Formation, Gravitational Waves and Jets

We perform MHD simulations in full GR of uniformly rotating stars that are marginally unstable to collapse. Our simulations model the direct collapse of supermassive stars (SMSs) to seed black holes (BHs) that can grow to become the supermassive BHs at the centers of quasars and AGNs. They also crudely model the collapse of massive Pop III stars to BHs, which could power a fraction of distant, long gamma-ray bursts (GRBs). The initial stellar models we adopt are $\Gamma = 4/3$ polytropes seeded with a dynamically unimportant dipole magnetic field (B field). We treat initial B-field configurations either confined to the stellar interior or extending out from the interior into the stellar ext…

research product

Jet launching from binary black hole-neutron star mergers: Dependence on black hole spin, binary mass ratio and magnetic field orientation

Black hole-neutron star (BHNS) mergers are one of the most promising targets for multimessenger astronomy. Using general relativistic magnetohydrodynamic simulations of BHNS undergoing merger we showed that a magnetically--driven jet can be launched by the remnant if the NS is endowed with a dipole B field extending from the interior into the exterior as in a radio pulsar. These self-consistent studies considered a BHNS system with mass ratio $q=3:1$, BH spin $a/M_{BH}=0.75$ aligned with the total orbital angular momentum (OAM), and a NS that is irrotational, threaded by an aligned B field, and modeled by an $\Gamma$--law equation of state with $\Gamma=2$. Here, as a crucial step in establi…

research product

Simulating the magnetorotational collapse of supermassive stars: Incorporating gas pressure perturbations and different rotation profiles

Collapsing supermassive stars (SMSs) with masses $M \gtrsim 10^{4-6}M_\odot$ have long been speculated to be the seeds that can grow and become supermassive black holes (SMBHs). We previously performed GRMHD simulations of marginally stable magnetized $\Gamma = 4/3$ polytropes uniformly rotating at the mass-shedding limit to model the direct collapse of SMSs. These configurations are supported entirely by thermal radiation pressure and model SMSs with $M \gtrsim 10^{6}M_\odot$. We found that around $90\%$ of the initial stellar mass forms a spinning black hole (BH) surrounded by a massive, hot, magnetized torus, which eventually launches an incipient jet. Here we perform GRMHD simulations o…

research product

Pulsar spin-down luminosity: Simulations in general relativity

Adopting our new method for matching general relativistic, ideal magnetohydrodynamics to its force-free limit, we perform the first systematic simulations of force-free pulsar magnetospheres in general relativity. We endow the neutron star with a general relativistic dipole magnetic field, model the interior with ideal magnetohydrodynamics, and adopt force-free electrodynamics in the exterior. Comparing the spin-down luminosity to its corresponding Minkowski value, we find that general relativistic effects give rise to a modest enhancement: the maximum enhancement for $n=1$ polytropes is $\sim 23\%$. Evolving a rapidly rotating $n=0.5$ polytrope we find an even greater enhancement of $\sim …

research product

Effect of spin on the inspiral of binary neutron stars

We perform long-term simulations of spinning binary neutron stars, with our highest dimensionless spin being $\chi \sim 0.32$. To assess the importance of spin during the inspiral we vary the spin, and also use two equations of state, one that consists of plain nuclear matter and produces compact stars (SLy), and a hybrid one that contains both nuclear and quark matter and leads to larger stars (ALF2). Using high resolution that has grid spacing $\Delta x\sim 98$ m on the finest refinement level, we find that the effects of spin in the phase evolution of a binary system can be larger than the one that comes from tidal forces. Our calculations demonstrate explicitly that although tidal effec…

research product

General relativistic magnetohydrodynamics simulations of prompt-collapse neutron star mergers: The absence of jets

Inspiraling and merging binary neutron stars are not only important source of gravitational waves, but also promising candidates for coincident electromagnetic counterparts. These systems are thought to be progenitors of short gamma-ray bursts (sGRBs). We have shown previously that binary neutron star mergers that undergo delayed collapse to a black hole surrounded by a weighty magnetized accretion disk can drive magnetically powered jets. We now perform magnetohydrodynamic simulations in full general relativity of binary neutron stars mergers that undergo prompt collapse to explore the possibility of jet formation from black hole-light accretion disk remnants. We find that after t − tBH ~2…

research product

GW170817, General Relativistic Magnetohydrodynamic Simulations, and the Neutron Star Maximum Mass

Recent numerical simulations in general relativistic magnetohydrodynamics (GRMHD) provide useful constraints for the interpretation of the GW170817 discovery. Combining the observed data with these simulations leads to a bound on the maximum mass of a cold, spherical neutron star (the TOV limit): ${M_{\rm max}^{\rm sph}}\lesssim 2.74/\beta$, where $\beta$ is the ratio of the maximum mass of a uniformly rotating neutron star (the supramassive limit) over the maximum mass of a nonrotating star. Causality arguments allow $\beta$ to be as high as $1.27$, while most realistic candidate equations of state predict $\beta$ to be closer to $1.2$, yielding ${M_{\rm max}^{\rm sph}}$ in the range $2.16…

research product

Great Impostors: Extremely Compact, Merging Binary Neutron Stars in the Mass Gap Posing as Binary Black Holes

Can one distinguish a binary black hole undergoing a merger from a binary neutron star if the individual compact companions have masses that fall inside the so-called mass gap of $3-5\ M_\odot$? For neutron stars, achieving such masses typically requires extreme compactness and in this work we present initial data and evolutions of binary neutron stars initially in quasiequilibrium circular orbits having a compactness $C=0.336$. These are the most compact, nonvacuum, quasiequilibrium binary objects that have been constructed and evolved to date, including boson stars. The compactness achieved is only slightly smaller than the maximum possible imposed by causality, $C_{\rm max}=0.355$, which…

research product

GW190814: Spin and equation of state of a neutron star companion

The recent discovery by LIGO/Virgo of a merging binary having a $\sim 23 M_\odot$ black hole and a $\sim 2.6 M_\odot$ compact companion has triggered a debate regarding the nature of the secondary, which falls into the so-called mass gap. Here we explore some consequences of the assumption that the secondary was a neutron star (NS). We show with concrete examples of heretofore viable equations of state (EOSs) that rapid uniform rotation may neither be necessary for some EOSs nor sufficient for others to explain the presence of a NS. Absolute upper limits for the maximum mass of a spherical NS derived from GW170817 already suggest that this unknown compact companion might be a slowly or even…

research product

Binary neutron star mergers: a jet engine for short gamma-ray bursts

We perform magnetohydrodynamic simulations in full general relativity (GRMHD) of quasi-circular, equal-mass, binary neutron stars that undergo merger. The initial stars are irrotational, $n=1$ polytropes and are magnetized. We explore two types of magnetic-field geometries: one where each star is endowed with a dipole magnetic field extending from the interior into the exterior, as in a pulsar, and the other where the dipole field is initially confined to the interior. In both cases the adopted magnetic fields are initially dynamically unimportant. The merger outcome is a hypermassive neutron star that undergoes delayed collapse to a black hole (spin parameter $a/M_{\rm BH} \sim 0.74$) imme…

research product

Constant circulation sequences of binary neutron stars and their spin characterization

For isentropic fluids, dynamical evolution of a binary system conserves the baryonic mass and circulation; therefore, sequences of constant rest mass and constant circulation are of particular importance. In this work, we present the extension of our Compact Object CALculator (\cocal{}) code to compute such quasiequilibria and compare them with the well-known corotating and irrotational sequences, the latter being the simplest, zero-circulation case. The circulation as a measure of the spin for a neutron star in a binary system has the advantage of being exactly calculable since it is a local quantity. To assess the different measures of spin, such as the angular velocity of the star, the q…

research product

Magnetic braking and damping of differential rotation in massive stars

Fragmentation of highly differentially rotating massive stars that undergo collapse has been suggested as a possible channel for binary black hole formation. Such a scenario could explain the formation of the new population of massive black holes detected by the LIGO/VIRGO gravitational wave laser interferometers. We probe that scenario by performing general relativistic magnetohydrodynamic simulations of differentially rotating massive stars supported by thermal radiation pressure plus a gas pressure perturbation. The stars are initially threaded by a dynamically weak, poloidal magnetic field confined to the stellar interior. We find that magnetic braking and turbulent viscous damping via …

research product

Black hole-neutron star coalescence: effects of the neutron star spin on jet launching and dynamical ejecta mass

Black hole-neutron star (BHNS) mergers are thought to be sources of gravitational waves (GWs) with coincident electromagnetic (EM) counterparts. To further probe whether these systems are viable progenitors of short gamma-ray bursts (sGRBs) and kilonovae, and how one may use (the lack of) EM counterparts associated with LIGO/Virgo candidate BHNS GW events to sharpen parameter estimation, we study the impact of neutron star spin in BHNS mergers. Using dynamical spacetime magnetohydrodynamic simulations of BHNSs initially on a quasicircular orbit, we survey configurations that differ in the BH spin ($a_{\rm BH}/M_{\rm BH}=0$ and $0.75$), the NS spin ($a_{\rm NS}/M_{\rm NS}=-0.17,\,0,\,0.23$ a…

research product

Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity

Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogues in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth …

research product

Magnetohydrodynamic simulations of self-consistent rotating neutron stars with mixed poloidal and toroidal magnetic fields

We perform the first magnetohydrodynamic simulations in full general relativity of self-consistent rotating neutron stars (NSs) with ultrastrong mixed poloidal and toroidal magnetic fields. The initial uniformly rotating NS models are computed assuming perfect conductivity, stationarity, and axisymmetry. Although the specific geometry of the mixed field configuration can delay or accelerate the development of various instabilities known from analytic perturbative studies, all our models finally succumb to them. Differential rotation is developed spontaneously in the cores of our magnetars which, after sufficient time, is converted back to uniform rotation. The rapidly rotating magnetars sho…

research product

Effects of spin on magnetized binary neutron star mergers and jet launching

Events GW170817 and GRB 170817A provide the best confirmation so far that compact binary mergers where at least one of the companions is a neutron star (NS) can be the progenitors of short gamma-ray bursts (sGRBs). An open question for GW170817 remains the values and impact of the initial NS spins. The initial spins could possibly affect the remnant black hole (BH) mass and spin, the remnant disk and the formation and lifetime of a jet and its luminosity. Here we summarize our general relativistic magnetohydrodynamic simulations of spinning, NS binaries undergoing merger and delayed collapse to a BH. The binaries consist of two identical NSs, modeled as $\Gamma=2$ polytropes, in quasicircul…

research product