0000000000314911

AUTHOR

M. Obergfell

showing 2 related works from this author

Melting the Superconducting State in the Electron Doped Cuprate Pr$_{1.85}% $Ce$_{0.15}$CuO$_{4-\delta}$ with Intense near-infrared and Terahertz Pul…

2016

We studied the superconducting (SC) state depletion process in an electron doped cuprate Pr$_{1.85}$Ce$_{0.15}$CuO$_{4-\delta}$ by pumping with near-infrared (NIR) and narrow-band THz pulses. When pumping with THz pulses tuned just above the SC gap, we find the absorbed energy density required to deplete superconductivity, $A_{dep}$, matches the thermodynamic condensation energy. Contrary, by NIR pumping $A_{dep}$ is an order of magnitude higher, despite the fact that the SC gap is much smaller than the energy of relevant bosonic excitations. The result implies that only a small subset of bosons contribute to pairing.

Condensed Matter::Quantum GasesCondensed Matter - Strongly Correlated ElectronsCondensed Matter::SuperconductivityCondensed Matter - SuperconductivityPhysics::Optics
researchProduct

N\'{e}el Spin Orbit Torque driven antiferromagnetic resonance in Mn$_{2}$Au probed by time-domain THz spectroscopy

2018

We observe the excitation of collective modes in the THz range driven by the recently discovered N\'{e}el spin-orbit torques (NSOT) in the metallic antiferromagnet Mn$_{2}$Au. Temperature dependent THz spectroscopy reveals a strong absorption mode centered near 1 THz, which upon heating from 4 K to 450 K softens and looses intensity. Comparison with the estimated eigenmode frequencies implies that the observed mode is an in-plane antiferromagnetic resonance (AFMR) mode. The AFMR absorption strength exceeds those found in antiferromagnetic insulators, driven by the magnetic field of the THz radiation, by three orders of magnitude. Based on this and the agreement with our theory modelling, we…

Condensed Matter - Strongly Correlated ElectronsCondensed Matter - Materials ScienceCondensed Matter::Strongly Correlated Electrons
researchProduct